大模型部署_书生浦语大模型 _作业2基本demo

本节课可以让同学们实践 4 个主要内容,分别是:

1、部署 InternLM2-Chat-1.8B 模型进行智能对话

1.1安装依赖库:

pip install huggingface-hub==0.17.3
pip install transformers==4.34 
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2 
pip install matplotlib==3.8.3 
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99

 1.2下载 InternLM2-Chat-1.8B 模型

import os
from modelscope.hub.snapshot_download import snapshot_download

# 创建保存模型目录
os.system("mkdir /root/models")

# save_dir是模型保存到本地的目录
save_dir="/root/models"

snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b", 
                  cache_dir=save_dir, 
                  revision='v1.1.0')

1.3运行 cli_demo 

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("\nUser  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break

    length = 0
    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="")
            length = len(response)

2、部署实战营优秀作品 八戒-Chat-1.8B 模型

  • 八戒-Chat-1.8B:魔搭社区
  • 聊天-嬛嬛-1.8B:OpenXLab浦源 - 模型中心
  • Mini-Horo-巧耳:OpenXLab浦源 - 模型中心
git clone https://gitee.com/InternLM/Tutorial -b camp2

 执行下载模型:

python /root/Tutorial/helloworld/bajie_download.py

 待程序下载完成后,输入运行命令:

streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006

 

3、通过 InternLM2-Chat-7B 运行 Lagent 智能体 Demo

 

Lagent 的特性总结如下:

  • 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
  • 接口统一,设计全面升级,提升拓展性,包括:
    • 型号 : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
    • Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
    • Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
  • 文档全面升级,API 文档全覆盖。

下载模型:

git clone https://gitee.com/internlm/lagent.git
# git clone https://github.com/internlm/lagent.git
cd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install -e . # 源码安装

在 terminal 中输入指令,构造软链接快捷访问方式:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

打开 路径下 文件,并修改对应位置 (71行左右) 代码 :internlm2_agent_web_demo_hf.py

 

 修改模型地址:

运行前端代码:

streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006

4、实践部署 浦语·灵笔2 模型

补充环境包,选用 进行开发:50% A100
pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5

下载 InternLM-XComposer 仓库 相关的代码资源:

cd /root/demo
git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.git
cd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626

 在 中输入指令,构造软链接快捷访问方式:terminal

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /group_share/01/models/internlm-xcomposer2-7b
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /group_share/01/models/internlm-xcomposer2-vl-7b

  图文写作实战(开启 50% A100 权限后才可开启此章节)

cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py  \
--code_path /root/models/internlm-xcomposer2-7b \
--private \
--num_gpus 1 \
--port 6006

 

 

 图片理解实战(开启 50% A100 权限后才可开启此章节)

根据附录 6.4 的方法,关闭并重新启动一个新的 ,继续输入指令,启动 :terminalInternLM-XComposer2-vl

conda activate demo

cd /root/demo/InternLM-XComposer
python gradio_demo_chat.py  \
--code_path /group_share/01/models/internlm-xcomposer2-vl-7b \
--private \
--num_gpus 1 \
--port 6006

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/671861.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

类和对象(一)(C++)

类和对象: 类的引入: C语言结构体中只能定义变量,在C中,结构体内不仅可以定义变量,也可以定义函数。比如: 之前在数据结构初阶中,用C语言方式实现的栈,结构体中只能定义变量&#…

Java | Leetcode Java题解之第123题买卖股票的最佳时机III

题目&#xff1a; 题解&#xff1a; class Solution {public int maxProfit(int[] prices) {int n prices.length;int buy1 -prices[0], sell1 0;int buy2 -prices[0], sell2 0;for (int i 1; i < n; i) {buy1 Math.max(buy1, -prices[i]);sell1 Math.max(sell1, b…

Docker最新超详细版教程通俗易懂

文章目录 一、Docker 概述1. Docker 为什么出现2. Docker 的历史3. Docker 能做什么 二、Docker 安装1. Docker 的基本组成2. 安装 Docker3. 阿里云镜像加速4. 回顾 hello-world 流程5. 底层原理 三、Docker 的常用命令1. 帮助命令2. 镜像命令dokcer imagesdocker searchdocker…

【C++ 初阶】内联函数 inline 与 宏定义的区别!

文章目录 1. 内联函数2. 内联函数和宏定义的区别3. 宏函数4. 宏的优缺点5. 小扩展 1. 内联函数 &#x1f34e; 概念 以inline修饰的函数叫做内联函数&#xff0c;编译时C编译器会在调用内联函数的地方展开&#xff0c;没有函数调用建立栈帧的开销&#xff0c;内联函数提升程序…

RabbitMQ三、springboot整合rabbitmq(消息可靠性、高级特性)

一、springboot整合RabbitMQ&#xff08;jdk17&#xff09;&#xff08;创建两个项目&#xff0c;一个生产者项目&#xff0c;一个消费者项目&#xff09; 上面使用原生JAVA操作RabbitMQ较为繁琐&#xff0c;很多的代码都是重复书写的&#xff0c;使用springboot可以简化代码的…

十_信号3-可重入函数

如上图所示链表&#xff0c;在插入节点的时候捕获到了信号&#xff0c;并且该信号的自定义处理方式中也调用了插入节点的函数。 在main函数中&#xff0c;使用insert向链表中插入一个节点node1&#xff0c;在执行insert的时&#xff0c;刚让头节点指向node1以后(如上图序号1)&…

④单细胞学习-cellchat细胞间通讯

目录 1&#xff0c;原理基础 流程 受体配体概念 方法比较 计算原理 2&#xff0c;数据 3&#xff0c;代码运行 1&#xff0c;原理基础 原文学习Inference and analysis of cell-cell communication using CellChat - PMC (nih.gov) GitHub - sqjin/CellChat: R toolk…

算法-找出N个数组的共同元素

一、代码与执行结果 财经新闻是大众了解金融事件的重要渠道&#xff0c;现有N位编辑&#xff0c;分别对K篇新闻进行专业的编辑与排版。需要您找出被这N位编辑共同编辑过的新闻&#xff0c;并根据这些新闻ID升序排列返回一个数组。 import random# 查找编辑共同处理的新闻id def…

测试基础09:缺陷(bug)生命周期和缺陷(bug)管理规范

课程大纲 1、缺陷&#xff08;bug&#xff09;生命周期 2、缺陷&#xff08;bug&#xff09;提交规范 2.1 宗旨 简洁、清晰、可视化&#xff0c;减少沟通成本。 2.2 bug格式和内容 ① 标题&#xff1a;一级功能-二级功能-三级功能_&#xff08;一句话描述bug&#xff1a;&…

eNsp——两台电脑通过一根网线直连通信

一、拓扑结构 二、电脑配置 ip和子网掩码&#xff0c;配置两台电脑处于同一网段 三、测试 四、应用 传文件等操作&#xff0c;可以在一台电脑上配置FTP服务器

含情脉脉的进程

冯诺依曼体系结构 一个计算机在工作的时候是怎样的呢&#xff1f; 我们所认识的计算机都是由一个个的硬件组件组成&#xff1a; 输入设备&#xff1a;键盘、鼠标、摄像头、话筒、磁盘、网卡 中央处理器&#xff08;CPU&#xff09;&#xff1a;运算器、控制器 输出设备&#x…

Java多线程(04)—— 保证线程安全的方法与线程安全的集合类

一、CAS 与原子类 1. CAS CAS&#xff08;compare and swap&#xff09;&#xff0c;是一条 cpu 指令&#xff0c;其含义为&#xff1a;CAS(M, A, B); M 表示内存&#xff0c;A 和 B 分别表示一个寄存器&#xff1b;如果 M 的值和 A 的值相同&#xff0c;则把 M 和 B 的值交…

我成功创建了一个Electron应用程序

1.创建electron项目命令&#xff1a; yarn create quick-start/electron electron-memo 2选择&#xff1a;√ Select a framework: vue √ Add TypeScript? ... No √ Add Electron updater plugin? ... Yes √ Enable Electron download mirror proxy? ... Yes 3.命令&a…

渲染100为什么是高性价比网渲平台?渲染100邀请码1a12

市面上主流的网渲平台有很多&#xff0c;如渲染100、瑞云、炫云、渲云等&#xff0c;这些平台各有特色和优势&#xff0c;也都声称自己性价比高&#xff0c;以渲染100为例&#xff0c;我们来介绍下它的优势有哪些。 1、渲染100对新用户很友好&#xff0c;注册填邀请码1a12有3…

09.责任链模式

09. 责任链模式 什么是责任链设计模式&#xff1f; 责任链设计模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为设计模式&#xff0c;它允许将请求沿着处理者对象组成的链进行传递&#xff0c;直到有一个处理者对象能够处理该请求为止。这种模式的目的…

go语言linux安装

下载&#xff1a;https://go.dev/dl/ 命令行使用 wget https://dl.google.com/go/go1.19.3.linux-amd64.tar.gz解压下载的压缩包&#xff0c;linux建议放在/opt目录下 我放在/home/ihan/go_sdk下 sudo tar -C /home/ihan/go_sdk -xzf go1.19.3.linux-amd64.tar.gz 这里的参数…

STM32作业实现(一)串口通信

目录 STM32作业设计 STM32作业实现(一)串口通信 STM32作业实现(二)串口控制led STM32作业实现(三)串口控制有源蜂鸣器 STM32作业实现(四)光敏传感器 STM32作业实现(五)温湿度传感器dht11 STM32作业实现(六)闪存保存数据 STM32作业实现(七)OLED显示数据 STM32作业实现(八)触摸按…

谷歌发布文生视频模型——Veo,可生成超过一分钟高质量1080p视频

前期我们介绍过OpenAI的文生视频大模型-Sora 模型&#xff0c;其模型一经发布&#xff0c;便得到了大家疯狂的追捧。而Google最近也发布了自己的文生视频大模型Veo&#xff0c;势必要与OpenAI进行一个正面交锋。 Veo 是Google迄今为止最强大的视频生成模型。它可以生成超过一分…

学习小心意——python创建类与对象

在python中&#xff0c;类表示具有相同属性和方法的对象的集合&#xff0c;一般而言都是先定义类再创建类的实例&#xff0c;然后再通过类的实例去访问类的属性和方法 定义类 类中可以定义为数据成员和成员函数。数据成员用于描述对象特征&#xff08;相当于看人的面貌&#…

针对大模型的上下文注入攻击

大型语言模型&#xff08;LLMs&#xff09;的开发和部署取得了显著进展。例如ChatGPT和Llama-2这样的LLMs&#xff0c;利用庞大的数据集和Transformer架构&#xff0c;能够产生连贯性、上下文准确性甚至具有创造性的文本。LLMs最初和本质上是为静态场景设计的&#xff0c;即输入…