[机器学习]GPT LoRA 大模型微调,生成猫耳娘

在这里插入图片描述

往期热门专栏回顾

专栏描述
Java项目实战介绍Java组件安装、使用;手写框架等
Aws服务器实战Aws Linux服务器上操作nginx、git、JDK、Vue
Java微服务实战Java 微服务实战,Spring Cloud Netflix套件、Spring Cloud Alibaba套件、Seata、gateway、shadingjdbc等实战操作
毕设大数据、Java Sprinboot、微服务等
Java基础篇Java基础闲聊,已出HashMap、String、StringBuffer等源码分析,JVM分析,持续更新中
Springboot篇从创建Springboot项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回、全局异常处理、Swagger文档
Spring MVC篇从创建Spring MVC项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回
华为云服务器实战华为云Linux服务器上操作nginx、git、JDK、Vue等,以及使用宝塔运维操作添加Html网页、部署Springboot项目/Vue项目等
Java爬虫通过Java+Selenium+GoogleWebDriver 模拟真人网页操作爬取花瓣网图片、bing搜索图片等
Vue实战讲解Vue3的安装、环境配置,基本语法、循环语句、生命周期、路由设置、组件、axios交互、Element-ui的使用等
Spring讲解Spring(Bean)概念、IOC、AOP、集成jdbcTemplate/redis/事务等

🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄

🌹简历模板、学习资料、面试题库、技术互助

🌹文末获取联系方式 📝

在这里插入图片描述


文章目录

  • 往期热门专栏回顾
  • 1、前言介绍
    • 1.1、文生图效果
  • 2、LoRA的工作原理
  • 3、LoRA的应用场景
  • 4、LoRA的优势
  • 5、LoRA的挑战
  • 6、LoRA的实现
  • 7、未来展望


1、前言介绍

在深度学习和自然语言处理领域,大规模预训练模型(如GPT-3、BERT等)已经展示了强大的能力。然而,训练这些模型需要大量的计算资源和数据,这对于许多组织和个人来说并不现实。LoRA(Low-Rank Adaptation)作为一种轻量级的微调方法,提供了一种高效且经济的解决方案。本文将详细介绍LoRA的工作原理、应用场景、以及其在大模型微调中的优势和挑战。

1.1、文生图效果

提示词:
//quality, (masterpiece:1.3), (detailed), ((,best quality,)),//,cute,1girl,//,brown cat ears,animal ear fluff,(light_brown hair:1.3),(red hair: 1.1),(red inner hair: 1.4), (straight bangs: 1.4),(,long_hair,single braid :1.4),(Ahoge),(detailed eyes,blue_eyes:1.4),medium chest,//, (yellow hairpin,crescent-shaped hairpin:1.4),off_shoulders,large red ribbon,(idol costume:1.4),thigh strap,frilled skirt,gloves,//,blush,smiling,upper_teeth,looking_down,//,hand_up,(holding microphone:1.3),(standing on stage),//,indoors,crowd of audience,Glow stick,scenery,colorful light particles,(colorful lights:1.3),(laser light:1.4),glow_in_the_dark,cowboy_shot,dynamic angle

反向提示词:
NSFW,text,(worst quality:1.331), (low quality:1.331), (normal quality:1.331), large head, extra digits, bad eye, extra fingers, fewer fingers, strange fingers, ((bad hands)), Strange eyes, Many hands, (Many arms), EasyNegativeV2, ng_deepnegative_v1_75t, pregnancy, badhandv4, six fingers, fused fingers, unclear eyes,poorly drawn,cloned face,bad face,

在提示词、反向提示词不变的情况下,我们在导入多个LoRA,并且调整参数,来生成我们想要的图片。

三个LoRA:
在这里插入图片描述

调整LoRA值之后的效果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、LoRA的工作原理

LoRA通过引入低秩矩阵分解技术来微调大型预训练模型。其核心思想是将预训练模型的权重矩阵分解为两个低秩矩阵的乘积,从而减少需要微调的参数数量。具体而言,LoRA假设原始权重矩阵W可以近似表示为两个低秩矩阵A和B的乘积,即W ≈ AB,其中A和B的秩远小于W的秩。

在微调过程中,LoRA仅优化低秩矩阵A和B,而保持原始模型权重W不变。这种方法不仅降低了计算复杂度,还减少了存储和传输的开销,使得微调过程更加高效。

3、LoRA的应用场景

  • 自然语言处理(NLP): LoRA在NLP任务中表现出色,如文本分类、机器翻译、情感分析等。通过微调预训练模型,LoRA可以快速适应不同的语言任务和数据集。

  • 计算机视觉: 在图像分类、目标检测和图像生成等任务中,LoRA也展示了强大的适应能力。通过微调预训练的视觉模型,LoRA可以在有限的计算资源下实现高效的图像处理。

  • 语音识别: LoRA在语音识别和语音生成任务中同样具有广泛的应用前景。通过微调预训练的语音模型,LoRA可以有效提升语音识别的准确性和生成质量。

4、LoRA的优势

  • 高效性: LoRA通过低秩矩阵分解显著减少了需要微调的参数数量,从而降低了计算复杂度和存储开销。这使得微调过程更加高效,尤其适合资源受限的环境。

  • 灵活性: LoRA可以应用于各种预训练模型和任务,具有广泛的适应性。无论是NLP、计算机视觉还是语音识别,LoRA都能提供有效的微调方案。

  • 经济性: 相对于全量微调(fine-tuning)大模型,LoRA需要的计算资源和时间成本大大降低。这对于小型团队和个人研究者来说尤为重要,使他们能够在有限的资源下实现高效的模型优化。

5、LoRA的挑战

  • 低秩近似的局限性: LoRA依赖于低秩矩阵分解来近似表示权重矩阵。然而,在某些情况下,低秩近似可能无法充分捕捉复杂的模型结构和数据特征,导致性能下降。

  • 模型选择的复杂性: 在实际应用中,不同任务和数据集对模型的需求各不相同。选择合适的预训练模型和微调策略仍然是一个挑战,需要进行大量的实验和调优。

  • 安全性和隐私: 在微调过程中,模型可能会接触到敏感数据。如何在保证数据安全和隐私的前提下进行高效的微调,是LoRA面临的另一个重要挑战。

6、LoRA的实现

为了更好地理解LoRA的实际应用,以下是一个基于PyTorch的LoRA实现示例。

import torch
import torch.nn as nn

class LoRA(nn.Module):
    def __init__(self, model, rank=4):
        super(LoRA, self).__init__()
        self.model = model
        self.rank = rank
        self.low_rank_modules = nn.ModuleList()

        for name, module in model.named_modules():
            if isinstance(module, nn.Linear):
                in_features, out_features = module.in_features, module.out_features
                A = nn.Parameter(torch.randn(out_features, rank))
                B = nn.Parameter(torch.randn(rank, in_features))
                self.low_rank_modules.append((name, A, B))

    def forward(self, x):
        for name, A, B in self.low_rank_modules:
            module = dict(self.model.named_modules())[name]
            W = module.weight
            low_rank_weight = A @ B
            module.weight = nn.Parameter(W + low_rank_weight)
        return self.model(x)


7、未来展望

随着深度学习和大规模预训练模型的发展,LoRA作为一种高效的微调方法,将在更多领域和应用中发挥重要作用。未来,LoRA可能会进一步优化低秩分解技术,提高近似的精度和效率。此外,LoRA还可以与其他优化技术结合,形成更强大的微调框架。

总之,LoRA为大规模预训练模型的高效微调提供了新的思路和方法。通过降低计算复杂度和存储开销,LoRA使得更多人能够利用预训练模型的强大能力,推动人工智能技术的普及和应用。期待未来LoRA在更多领域中的创新和突破,为深度学习的发展注入新的活力。


资料获取,更多粉丝福利,关注下方公众号获取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/668640.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

BU01板卡引脚

概述 BU01 是一款高速采集卡,主要用于高带宽数据采集及传输,应用领域多为数据中 心及数据采集领域。 端口提供60Gbps 传输带宽,可兼容2 个SFP万兆网口,和1 个40GE QSFP 光 口。和主机通信采用的是PCIE 2.0 x8 模式,最…

C++哈希的应用:位图 布隆过滤器 哈希切割

目录 位图 bitset 构造空间 将某个位变为0 将某个位变为1 检查是否存在 完整代码 拓展问题一 ​编辑 拓展问题二 布隆过滤器 判断是否存在 使用场景 哈希切割 拓展问题一 拓展问题二 位图 问题:有四十个亿未排序的不重复的无符号整数,此…

算法导论 总结索引 | 第三部分 第十四章:数据结构的扩张

1、通过存储 额外信息的方法来扩张一 种标准的数据结构,然后对这种数据结构,编写新的操作来支持所需的应用。因为添加的信息 必须要能被该数据结构上的常规操作更新和维护 2、通过扩张红黑树构造出的两种数据结构:14.1介绍 一种支持一般动态…

对boot项目拆分成cloud项目的笔记

引言:这里我用的是新版本的技术栈 spring-boot-starter-parent >3.2.5 mybatis-spring-boot-starter >3.0.3 mybatis-plus-boot-starter >3.5.5 spring-cloud-dependencies …

给Docker一个辈分(备份),免得无后...

定期备份所有 Docker 镜像 Linux 脚本 创建一个名为 backup_all_docker_images.sh 的脚本文件,内容如下: #!/bin/bash# 定义变量 BACKUP_DIR"/backup/docker" TIMESTAMP$(date "%Y%m%d%H%M") BACKUP_FILE"${BACKUP_DIR}/doc…

vx小程序初学

小程序初学 在我还没接触到微信小程序之前,通常使用轮播要么手写或使用swiper插件去实现,当我接触到微信小程序之后,我看到了微信小程序的强大之处,让我为大家介绍一下吧! swiper与swiper-item一起使用可以做轮播图 …

Facebook开户 | Facebook二不限户

Facebook二不限户的正确使用方法 Facebook 二不限是指 Facebook 国内二不限户,是通过代理开出来的一种特殊账户,️需要广告主准备主页。 其特点是:限主页、不限域名、额度没解限,解限后则不限额度。 相比于三不限户,…

Keras 3.0强势回归,助力深度学习

大家好,Keras的简洁代码风格一直受到开发者的青睐,自从Keras宣布支持Pytorch和Jax后,开发者们迎来了新的选择。 本文将介绍Keras 3.0的实用技巧,以一个典型的编码器-解码器循环神经网络为例,展示如何利用子类化API构建…

【Ubuntu】100 系统字体安装和更改

系统:Ubuntu18.04LTS 1 Why we need? 写这篇经验贴的原因: ①我需要装一下中文字体(Qt要用); ②想调一下字体大小和默认中文字体的样式 2 装第三方字体 Step1:安装软件Font Manager sudo ap…

AI数据分析:用kimi生成一个正弦波数学动画

正弦波公式: ƒ(x) a * sin(x x0) b 公式中: a: 决定正弦函数振动幅度的大小; x0:表示x开始比0拖后的弧度值; b:表示函数偏离X轴的距离; 对于难以理解的学生来说,可以用动画把这个公式直观的展现出…

数据结构05:树与二叉树 习题02[C++]

考研笔记整理,本篇作为二叉树的入门习题,供小伙伴们参考~🥝🥝 之前的博文链接在此:数据结构05:树与二叉树[C]-CSDN博客~🥝🥝 第1版:王道书的课后习题~🧩&am…

曲面细分技术在AI去衣中的创新应用

引言: 随着人工智能技术的飞速发展,其在图像处理领域的应用日益广泛。其中,AI去衣技术因其独特的应用场景而备受瞩目。在这一技术的发展过程中,曲面细分技术发挥了至关重要的作用。本文将深入探讨曲面细分技术在AI去衣中的作用及其…

[AI OpenAI] 推出ChatGPT Edu

一种负担得起的解决方案,帮助大学将AI负责任地引入校园。 我们宣布推出ChatGPT Edu,这是一个专为大学设计的ChatGPT版本,旨在负责任地向学生、教职员工、研究人员和校园运营部署AI。ChatGPT Edu由GPT-4o提供支持,能够跨文本和视觉…

【计算机毕设】设计与实现基于SpringBoot的在线文档管理系统 - 源码免费(私信领取)

免费领取源码 | 项目完整可运行 | v:chengn7890 诚招源码校园代理! 1. 研究目的 在当今信息爆炸的时代,文档管理对于任何组织都至关重要。基于SpringBoot的在线文档管理系统的设计旨在为用户提供一个便捷、高效、安全的…

unityBIM

Revit模型到Unity勉强能用 1、Revit直接导出FBX,然后拖到unity里面 2、通过Navisworks导出FBX,拖到unity里面。 我什么都还没做,只建立了一个空的URP效果,把FBX拖进去,挂了一个相机控制器,效果勉强看得过…

IP路由策略1

控制层面:路由协议传递路由信息的流量--对应的方向 数据层面:设备间具体访问时请求的流量--对应方向 控制层面方向与数据层面方向一定相反 在控制层面流量进或出的接口上,抓取流量后,修改其中参数或删除该信息,最终起到影响路由器路由表的生…

React UseMemo源码分析

useMemo useMemo 是 React 提供的内置 Hooks,主要作用就是缓存,如果依赖项没有变化,Memo 方法不会再次执行,计算量比较高的方法可以使用,从而提高用户体验。本文将通过一个例子跟踪 Memo 的创建、更新流程。 App.js …

【机器学习】让大模型变得更聪明

文章目录 前言1. 理解大模型的局限性1.1 理解力的挑战1.2 泛化能力的挑战1.3 适应性的挑战 2. 算法创新:提高模型学习和推理能力2.1 自监督学习2.2 强化学习2.3 联邦学习 3. 数据质量与多样性:增强模型的泛化能力3.1 高质量数据的获取3.2 数据多样性的重…

LeetCode刷题之HOT100之下一个排列

《百年孤独》看到了255页,还有100页就看完了,每个人物的一生就像流水,波澜不惊下是暗流涌动。值得一提的是外国小说对人性的描写更为深入,每个人物性格都被刻画的淋漓。是的,今天雨一直在下,淋湿我的身上&a…

顶点着色技术在AI去衣中的作用

在当今的数字时代,人工智能(AI)已经渗透到我们生活的方方面面,从智能家居到自动驾驶汽车,再到在线购物推荐。然而,AI的影响远不止于此。近年来,AI在图像处理和计算机视觉领域的应用取得了显著进…