线上OJ:
【06NOIP普及组】数列
思考:
这道题大概率是一道可以使用“瞪眼法”找到规律的题目。我们尝试把数据补充的更多,以便于寻找规律
当 k=3 时,k的幂次为1, 3, 9, 27, 81…
从上述推理中,我们发现要输出的幂次和中的第 N 项(也就是幂次和中的序号N),对应的二进制位数和幂次和对应的二进制位数相同。
举例:
N=7时,7 的二进制是 ( 111 ) 2 (111)_2 (111)2,即第0位,第1位,第2位均为1, 7 = 2 2 + 2 1 + 2 0 7 = 2^2 + 2^1 + 2^0 7=22+21+20。转成 k 进制(k=3)时的幂次和为 3 2 + 3 1 + 3 0 = 13 3^2 + 3^1 + 3^0 = 13 32+31+30=13, ( 111 ) 3 = 13 (111)_3=13 (111)3=13(即第0位,第1位,第2位均为1)
N=5时,5 的二进制是 ( 101 ) 2 (101)_2 (101)2,即第0位,第2位均为1,转成 k 进制(k=3)时 ( 101 ) 3 = 10 (101)_3=10 (101)3=10(即第0位,第2位均为1)
N=12时,12的二进制是 ( 1100 ) 2 (1100)_2 (1100)2,即第2位,第3位均为1,转成 k 进制(k=3)时 ( 1100 ) 3 = 36 (1100)_3=36 (1100)3=36(即第2位,第3位均为1)
结论:这道题就变成了先把 N 转成二进制,然后再转成 k 进制输出即可
题解代码:
#include <bits/stdc++.h>
using namespace std;
int n, k, ans;
int main()
{
cin >> k >> n;
int a[15], i; // i 定义在外面,后续可以直接用。因为N小于1000。且1024位2的10次方,所以a[11]足以表示1000以内的二进制数
// 把十进制n转成二进制
for(i = 0; n > 0; i++) a[i] = n%2, n/=2; // 用除2取余法,保留余数至a[i],然后n/2准备下一轮除余。注:a[0]是最低位
for(int j = i - 1; j >= 0; j--) // 按k为基数,倒序计算新的数值
ans = ans * k + a[j];
cout << ans << endl;
return 0;
}