[代码复现]Self-Attentive Sequential Recommendation(ing)

参考代码:SASRec.pytorch
可参考资料:SASRec代码解析

前言:文中有疑问的地方用?表示了。可以通过ctrl+F搜索’?'。

环境

conda create -n SASRec python=3.9
pip install torch torchvision

因为我是mac运行的,所以device是mps
下面的代码可以测试mps是否可以正常运行

python # 进入python环境
>>> import torch
>>> print(torch.backends.mps.is_available())
# 输出为True则说明可以正常运行

测试

python main.py --device=mps --dataset=ml-1m --train_dir=default --state_dict_path='ml-1m_default/SASRec.epoch=601.lr=0.001.layer=2.head=1.hidden=50.maxlen=200.pth' --inference_only=true --maxlen=200
### average sequence length: 163.50
### ............................................................test (NDCG@10: 0.5662, HR@10: 0.8056)

main.py

str2bool

def str2bool(s):
    if s not in {'false', 'true'}:
        raise ValueError('Not a valid boolean string')
    return s == 'true'

将字符串’true’转化为逻辑1,字符串’false’转化为逻辑0,其他字符串输入则抛出错误。
这个函数用于命令行解析。

命令行解析:argparse.ArgumentParser()

# 1.导入argparse模块
import argparse
# 2.创建一个解析对象
parser = argparse.ArgumentParser()
# 3.向对象parser中添加要关注的命令行参数和选项
# 参数名前加'--'表示这是“关键词参数”(不同于位置参数)
parser.add_argument('--dataset', required=True)   # 必选项:数据集dataset
parser.add_argument('--train_dir', required=True) # 必选项
parser.add_argument('--batch_size', default=128, type=int) # type的参数:会将str类型转化为对应的type类型
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--maxlen', default=50, type=int)
parser.add_argument('--hidden_units', default=50, type=int)
parser.add_argument('--num_blocks', default=2, type=int)
parser.add_argument('--num_epochs', default=201, type=int)
parser.add_argument('--num_heads', default=1, type=int)
parser.add_argument('--dropout_rate', default=0.5, type=float)
parser.add_argument('--l2_emb', default=0.0, type=float)
parser.add_argument('--device', default='cpu', type=str)
parser.add_argument('--inference_only', default=False, type=str2bool)
parser.add_argument('--state_dict_path', default=None, type=str)
# 4.调用parse_args()方法进行解析
args = parser.parse_args()

命令行输入python main.py --device=mps --dataset=ml-1m --train_dir=default --state_dict_path='ml-1m_default/SASRec.epoch=601.lr=0.001.layer=2.head=1.hidden=50.maxlen=200.pth' --inference_only=true --maxlen=200时调用
结果:
dataset: ml-1m
train_dir: default
batch_size: 128(默认)
lr: 0.001(默认)
maxlen: 200
hidden_units: 50(默认)
num_blocks: 2(默认)
num_epochs: 201(默认)
num_heads: 1(默认)
dropout_rate: 0.5(默认)
l2_emb: 0.0
device: mps
inference_only: True
state_dict_path: ml-1m_default/SASRec.epoch=601.lr=0.001.layer=2.head=1.hidden=50.maxlen=200.pth

PS:
1.命令行参数解析模块:解析命令行代码的参数。
参考:argparse.ArgumentParser()用法解析
2.关键词参数设定的时候需要--,在命令行中也需要。但是在代码中使用时候不需要。即:

  • 向对象parser中添加关键词参数parser.add_argument('--dataset', required=True)
  • 命令行传参:python main.py --device=mps --dataset=ml-1m
  • 代码中使用:args.dataset

参数写入args.txt

# args.dataset + '_' + args.train_dir如果不是现有目录就创建
if not os.path.isdir(args.dataset + '_' + args.train_dir):
    os.makedirs(args.dataset + '_' + args.train_dir)
# 拼接上面的目录和args.txt路径,并打开对应文件'写入'
# vars返回对象的__dict__属性
with open(os.path.join(args.dataset + '_' + args.train_dir, 'args.txt'), 'w') as f:
    f.write('\n'.join([str(k) + ',' + str(v) for k, v in sorted(vars(args).items(), key=lambda x: x[0])]))
# f.close()不需要,因为上面使用的是with open

以上面的测试为例
args.dataset = ml-1m
args.train_dir=default
这行代码的目的是将args参数按行逐个写入到ml-1m-default/args.txt文件中。
在这里插入图片描述

PS:
vars返回对象的__dict__属性。可以参考:Python vars函数
dict.items()返回视图对象:将字典转化为元组的列表。
sorted(vars(args).items(), key=lambda x: x[0]) # 根据元组的第一个元素升序
[str(k) + ',' + str(v) for k, v in sorted(vars(args).items(), key=lambda x: x[0])]:列表生成器
str.join(iterable):返回一个由 iterable 中的字符串拼接而成的字符串,str作为中间的分隔符。


下面开始是main的主要内容(以下都用测试的代码的参数为例)。

参数列表:
batch_size,128
dataset,ml-1m
device,mps
dropout_rate,0.5
hidden_units,50
inference_only,True
l2_emb,0.0
lr,0.001
maxlen,200
num_blocks,2
num_epochs,201
num_heads,1
state_dict_path,ml-1m_default/SASRec.epoch=601.lr=0.001.layer=2.head=1.hidden=50.maxlen=200.pth
train_dir,default

数据集划分

# 利用utils.data_partition函数对数据集进行划分
from utils import data_partition

dataset = data_partition(args.dataset) # 传参"ml-1m"
[user_train, user_valid, user_test, usernum, itemnum] = dataset
num_batch = len(user_train) // args.batch_size # 计算训练批次
# 计算平均sequence长度
cc = 0.0
for u in user_train:
	cc += len(user_train[u])
print('average sequence length: %.2f' % (cc / len(user_train)))

f = open(os.path.join(args.dataset + '_' + args.train_dir, 'log.txt'), 'w')

这部分主要是进行数据集划分,得到训练集、验证集、测试集
关于data_partition需要看utils.py文件

结果:
user_train:{1: [1,2,3,4…], 2:[80, 81,…], …}
user_valid:{1: [78], 2:[137], 3:[248], …}
user_test:{1: [79], 2: [138], 3: [249], …}
usernum: 6040
itemnum: 3416
num_batch: 47
average sequence length: 163.50

疑问:这里代码注释里写了tail? + ((len(user_train) % args.batch_size) != 0),是否需要考虑不足batch_size的部分?
虽然创建log.txt文件,但是后面并没有用到,意义不明?

采样

sampler = WarpSampler(user_train, usernum, itemnum, batch_size=args.batch_size, maxlen=args.maxlen, n_workers=3)

实例化WarpSampler类。这个类主要是用来通过采样用户,生成数据的。

模型类实例化

model = SASRec(usernum, itemnum, args).to(args.device) # no ReLU activation in original SASRec implementation?

模型训练

# 将模型设置为训练模式,确保”Batch Normalization”和“Dropout“正常工作
	model.train()

    epoch_start_idx = 1
    if args.state_dict_path is not None:
        try:
            model.load_state_dict(torch.load(args.state_dict_path, map_location=torch.device(args.device)))
            tail = args.state_dict_path[args.state_dict_path.find('epoch=') + 6:]
            epoch_start_idx = int(tail[:tail.find('.')]) + 1
        except: # in case your pytorch version is not 1.6 etc., pls debug by pdb if load weights failed
            print('failed loading state_dicts, pls check file path: ', end="")
            print(args.state_dict_path)
            print('pdb enabled for your quick check, pls type exit() if you do not need it')
            import pdb; pdb.set_trace()

utils.py

fun: data_partition

from collections import defaultdict

def data_partition(fname):
    usernum = 0
    itemnum = 0
    User = defaultdict(list) # 创建key-list的字典
    user_train = {}
    user_valid = {}
    user_test = {}
    # assume user/item index starting from 1
    f = open('data/%s.txt' % fname, 'r')
    # 构建"user-对应item的列表"的字典,获得usernum, itemnum
    for line in f:
        u, i = line.rstrip().split(' ') # rstrip():去掉右边的空格,split(' '): 根据空格拆分得到字符串列表
        u = int(u) # str->int
        i = int(i)
        usernum = max(u, usernum) # usernum记录user的最大值,即user数
        itemnum = max(i, itemnum) # itemnum记录item的最大值,即item数
        User[u].append(i) # User的key是user的index,value是item的index组成的list
	
	# 构建user_train, user_valid, user_test
    for user in User: 
        nfeedback = len(User[user]) # 计算user对应的item数量
        # item数量<3的user, 则对应的item列表直接作为user_train[user]的value
        # item数量>=3的user,对应的item列表的
        # 最后一个item作为user_test[user]的value
        # 倒数第二个item作为user_valid[user]的value
        # 剩下前面的item作为user_train[user]的value
        if nfeedback < 3:
            user_train[user] = User[user]
            user_valid[user] = []
            user_test[user] = []
        else:
            user_train[user] = User[user][:-2]
            user_valid[user] = []
            user_valid[user].append(User[user][-2])
            user_test[user] = []
            user_test[user].append(User[user][-1])
    return [user_train, user_valid, user_test, usernum, itemnum]

实际调用:dataset = data_partition('ml-1m')
1.data_partition目的是将data/fname.txt文件中的user-item对转化为user-item列表字典,最终返回了[user_train, user_valid, user_test, usernum, itemnum]
2.user_train形如{1: [1, 2, 3, 4, …], 2:[…], …}, user_valid形如{1: [78], 2: [137], …}, user_test形如{1: [79], 2: [138], …}

PS:
1.defaultdict创建的字典,传入的”工厂函数"可以表明字典value的类型和默认值,这使得这种字典很方便地将(键-值)序列转化为对应的字典。具体可以参考:
python中defaultdict用法详解
defaultdict 例子
2.事实上,经过测试,"m1-1m"这个例子里面,并没有某个user的对应item列表数量小于3。

class: WarpSampler

from multiprocessing import Process, Queue

class WarpSampler(object):
    def __init__(self, User, usernum, itemnum, batch_size=64, maxlen=10, n_workers=1):
        self.result_queue = Queue(maxsize=n_workers * 10) # 创建一个最多存放n_workers*10个数据的消息队列,用于支持进程之间的通信
        self.processors = [] # 存放子进程的列表
        # 列表中添加进程操作对象,其中,sample_function作为任务交给子进程执行,执行要用到的参数是args
        for i in range(n_workers):
            self.processors.append(
                Process(target=sample_function, args=(User,
                                                      usernum,
                                                      itemnum,
                                                      batch_size,
                                                      maxlen,
                                                      self.result_queue,
                                                      np.random.randint(2e9)
                                                      )))
            self.processors[-1].daemon = True # 设置进程为守护进程(必须在进程启动前设置)
            self.processors[-1].start()       # 创建进程

    def next_batch(self):
        return self.result_queue.get() # 从消息队列中取出数据并返回

    def close(self):
        for p in self.processors:
            p.terminate() # 杀死进程
            p.join()      # 等待进程结束

实际调用:sampler = WarpSampler(user_train, usernum, itemnum, batch_size=128, maxlen=200, n_workers=3)
中间要用到sample_function,遇到可以跳转查看sample_function讲解。
WarpSampler类:
初始化:生成大小为30的消息队列,创建3个子进程,每个子进程生成一批数据,并存入消息队列
next_batch方法:从消息队列中取数据
close方法:杀死所有子进程

PS:
1.关于守护进程,可以参考:守护进程 - 《Python零基础到全栈系列》。具体地:p.daemon默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止并且设定为True后,p不能创建自己的新进程p.daemon必须在p.start()之前设置

fun: sample_function

import numpy as np

def sample_function(user_train, usernum, itemnum, batch_size, maxlen, result_queue, SEED):
	# 采样
    def sample():
        user = np.random.randint(1, usernum + 1) # 随机返回1-usernum之间的一个整数
        # 如果user_train的序列长度小于等于1,则重新随机取1-usernum之间的一个整数
        while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) 
		
        seq = np.zeros([maxlen], dtype=np.int32) # 长为maxlen的ndarray
        pos = np.zeros([maxlen], dtype=np.int32) 
        neg = np.zeros([maxlen], dtype=np.int32)
        nxt = user_train[user][-1] # 最后一个item序号
        idx = maxlen - 1 # 199

        ts = set(user_train[user]) 
        for i in reversed(user_train[user][:-1]):
            seq[idx] = i
            pos[idx] = nxt
            if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts)
            nxt = i  # 当前轮次的i,实际上是下一轮次的nxt
            idx -= 1 # 轮次加1,索引-1
            if idx == -1: break # 意味着item序列长度超出maxlen,索引溢出,跳出循环

        return (user, seq, pos, neg)

    np.random.seed(SEED) # 设置随机数种子
    while True:
        one_batch = []
        for i in range(batch_size):
            one_batch.append(sample()) # one_batch是元组(user, seq, pos, neg)的列表

        result_queue.put(zip(*one_batch)) # 结果写入消息队列

实际调用:sample_function(user_train, usernum, itemnum, batch_size=128, maxlen=200, self.result_queue, np.random.randint(2e9))
中间要用到random_neq,遇到可以跳转查看random_neq讲解。
sample的目的是:采样,返回某user的id,并根据其user_train序列生成对应的输入序列seq,正例序列pos,反例序列neg
sample_function的目的是:多次采样,并组合得到一批次的数据。同时,它将在WarpSampler类中作为进程活动的方法。
这里找个例子:user=1, user_train=[1, 2, 4, 6]
则初始:nxt=6, idx=199, reversed(user_train[user][:-1])=[4, 2, 1]
第1次循环:i=4, seq[199]=i=4, pos[199]=nxt=6, neg[199]=100, nxt=i=4, idx=idx-1=198
第2次循环:i=2, seq[198]=i=2, pos[198]=nxt=4, neg[198]=200, nxt=i=2, idx=idx-1=197
第3次循环:i=1, seq[197]=i=4, pos[197]=nxt=2, neg[197]=300, nxt=i=1, idx=idx-1=196
此时seq=[0, 0, ..., 1, 2, 4]
此时pos=[0, 0, ..., 2, 4, 6]
此时neg=[0, 0, ..., 300, 200, 100]

PS:
1.sample中的if nxt != 0似乎没有用?因为nxt一定不会等于0
2.zip(*one_batch)是将元组(user, seq, pos, neg)中的对应元素组成元组,即useruser组成元组。具体可以参考:一文看懂Python(十)-- zip与zip(*)函数

fun: random_neq

def random_neq(l, r, s):
    t = np.random.randint(l, r)
    while t in s:
        t = np.random.randint(l, r)
    return t

实际调用:random_neq(1, itemnum + 1, ts),其中ts是用户对应的item集合
random_neq的目的是:在所有item序号中,找一个没有出现在用户的item集合中的item作为反例item序号

model.py

class: SASRec

主体结构:

class SASRec(torch.nn.Module):
    def __init__(self, user_num, item_num, args):
    	...
    def log2feats(self, log_seqs):
    	...
    def forward(self, user_ids, log_seqs, pos_seqs, neg_seqs): # for training
    	...
    def predict(self, user_ids, log_seqs, item_indices): # for inference
    	...

SASRec.__init__

    def __init__(self, user_num, item_num, args):
        super(SASRec, self).__init__()

        self.user_num = user_num
        self.item_num = item_num
        self.dev = args.device

        # TODO: loss += args.l2_emb for regularizing embedding vectors during training
        # https://stackoverflow.com/questions/42704283/adding-l1-l2-regularization-in-pytorch
        # 构造item的embedding表,pos的embedding表
        # padding_idx=0,说明索引0对应的embedding不参与梯度运算,不在训练时更新
        self.item_emb = torch.nn.Embedding(self.item_num+1, args.hidden_units, padding_idx=0)
        self.pos_emb = torch.nn.Embedding(args.maxlen, args.hidden_units)
        self.emb_dropout = torch.nn.Dropout(p=args.dropout_rate)
		
		
        self.attention_layernorms = torch.nn.ModuleList()
        self.attention_layers = torch.nn.ModuleList()
        self.forward_layernorms = torch.nn.ModuleList()
        self.forward_layers = torch.nn.ModuleList()

        self.last_layernorm = torch.nn.LayerNorm(args.hidden_units, eps=1e-8)

        for _ in range(args.num_blocks):
            new_attn_layernorm = torch.nn.LayerNorm(args.hidden_units, eps=1e-8)
            self.attention_layernorms.append(new_attn_layernorm)

            new_attn_layer =  torch.nn.MultiheadAttention(args.hidden_units,
                                                            args.num_heads,
                                                            args.dropout_rate)
            self.attention_layers.append(new_attn_layer)

            new_fwd_layernorm = torch.nn.LayerNorm(args.hidden_units, eps=1e-8)
            self.forward_layernorms.append(new_fwd_layernorm)

            new_fwd_layer = PointWiseFeedForward(args.hidden_units, args.dropout_rate)
            self.forward_layers.append(new_fwd_layer)

            # self.pos_sigmoid = torch.nn.Sigmoid()
            # self.neg_sigmoid = torch.nn.Sigmoid()

实际调用:model = SASRec(usernum, itemnum, args).to(args.device)

PS:
1.torch.nn.Embedding:生成Embedding实例,该实例作用在tensor上,会对其中的每个元素做embedding。
详细可参考: 无脑入门pytorch系列(一)—— nn.embedding
2.torch.nn.Dropout:生成Dropout实例,该实例作用在tensor上,会以一定概率使输出变0。
详细可参考:torch.nn.Dropout官网
3.torch.nn.ModuleList:存放子模块的列表
4.torch.nn.LayerNorm:生成LayerNorm实例,该实例作用在tensor上,以最后一个/几个维度求均值和标准差,最后做layer norm。
详细可参考:torch.nn.LayerNorm官网
5.torch.nn.MultiheadAttention:生成多头注意力实例。由于没有设置"batch_first=True",所以要求输入的维度是(seq, batch, feature)
详细可参考:torch.nn.MultiheadAttention官网;torch.nn.MultiheadAttention的使用和参数解析

SASRec.log2feats

import numpy as np

    def log2feats(self, log_seqs):
    	# 这部分将输入序列embedding,并加入了位置embedding,最后应用了dropout
        seqs = self.item_emb(torch.LongTensor(log_seqs).to(self.dev))
        seqs *= self.item_emb.embedding_dim ** 0.5 # 为何要乘以根号d?
        positions = np.tile(np.array(range(log_seqs.shape[1])), [log_seqs.shape[0], 1])
        seqs += self.pos_emb(torch.LongTensor(positions).to(self.dev))
        seqs = self.emb_dropout(seqs)
		
		# seq列表中0对应的embeeding全部置于0
        timeline_mask = torch.BoolTensor(log_seqs == 0).to(self.dev)
        seqs *= ~timeline_mask.unsqueeze(-1) # broadcast in last dim
		
        tl = seqs.shape[1] # time dim len for enforce causality
        attention_mask = ~torch.tril(torch.ones((tl, tl), dtype=torch.bool, device=self.dev))

        for i in range(len(self.attention_layers)):
        	# 为了匹配MultiheadAttention,所以需要换维度
            seqs = torch.transpose(seqs, 0, 1)
            Q = self.attention_layernorms[i](seqs)
            mha_outputs, _ = self.attention_layers[i](Q, seqs, seqs, 
                                            attn_mask=attention_mask)
                                            # key_padding_mask=timeline_mask
                                            # need_weights=False) this arg do not work?
            seqs = Q + mha_outputs
            seqs = torch.transpose(seqs, 0, 1)

            seqs = self.forward_layernorms[i](seqs)
            seqs = self.forward_layers[i](seqs)
            seqs *=  ~timeline_mask.unsqueeze(-1)

        log_feats = self.last_layernorm(seqs) # (U, T, C) -> (U, -1, C)

        return log_feats

输入log_seqs是形如:([0, 0, 3, ...], ..., [0, 2, ...])的元组,元素是某个user_id对应的seq列表(seq列表见sample_function的例子),size为batch_size*maxlen
log2feats里基本包含了模型主体网络的构建,包括embedding,attention,ffn等。

在这里插入图片描述

PS:
0.源代码seqs *= self.item_emb.embedding_dim ** 0.5,为什么要乘以根号d。一种解释是nn.embedding使用xavier init初始化,方差为 1 / d 1/\sqrt{d} 1/d ,为了方便收敛所以要乘以根号d。
详细参考:Transformer 3. word embedding 输入为什么要乘以 embedding size的开方
1.torch.LongTensor是Pytorch的一个数据类型,用于表示包含整数(整型数据)的张量(tensor)。其元素都是整数。需要注意的是,torch.LongTensor 在 PyTorch 1.6 版本之后被弃用,推荐使用 torch.tensor 并指定 dtype=torch.long 来创建相同类型的张量。如torch.tensor(data, dtype=torch.long)
详细参考:torch.LongTensor使用方法
2.np.tile(A, reps)的作用是将沿指定轴重复数组A。
详细参考:Numpy|np.tile|处理数组复制扩展小帮手
3.torch.tensor.unsqueeze(dim):在指定的位置增加一个维度。
详细参考:pytorch中tensor的unsqueeze()函数和squeeze()函数的用处
4.torch.tril():返回下三角矩阵。
详细参考:pytorch中tril函数介绍
5.torch.nn.MultiheadAttention的实例的forward方法中,有key_padding_mask参数和attn_mask参数,前者作用是”屏蔽计算注意力时key的填充位置“,后者的作用是”屏蔽自注意力计算时query的未来位置“。
详细参考:pytorch的key_padding_mask和参数attn_mask有什么区别?;PyTorch的Transformer

疑问:为什么这里不需要key_padding_mask?这里,似乎是利用~timeline_mask.unsqueeze(-1)将padding的序列遮盖。

SASRec.forward

    def forward(self, user_ids, log_seqs, pos_seqs, neg_seqs): # for training        
        log_feats = self.log2feats(log_seqs) # user_ids hasn't been used yet

        pos_embs = self.item_emb(torch.LongTensor(pos_seqs).to(self.dev))
        neg_embs = self.item_emb(torch.LongTensor(neg_seqs).to(self.dev))

        pos_logits = (log_feats * pos_embs).sum(dim=-1)
        neg_logits = (log_feats * neg_embs).sum(dim=-1)

        # pos_pred = self.pos_sigmoid(pos_logits)
        # neg_pred = self.neg_sigmoid(neg_logits)

        return pos_logits, neg_logits # pos_pred, neg_pred

输入:
user_ids: (1, 2, ...),元素是user_id
log_seqs: ([0, 0, 3, ...], ..., [0, 2, ...]) ∈ R 128 × 200 \in R^{128\times 200} R128×200,元素是某user_id对应的item序列。
pos_seqs([78], ..., [137]) ∈ R 128 × 1 \in R^{128\times 1} R128×1,元素是某user_id对应的item序列的预测值正例
neq_seqs([79], ..., [138]) ∈ R 128 × 1 \in R^{128\times 1} R128×1,元素是某user_id对应的item序列的预测值反例

PS:
1.user_ids并没有被用到

class:PointWiseFeedForward

class PointWiseFeedForward(torch.nn.Module):
    def __init__(self, hidden_units, dropout_rate):
        super(PointWiseFeedForward, self).__init__()

        self.conv1 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1)
        self.dropout1 = torch.nn.Dropout(p=dropout_rate)
        self.relu = torch.nn.ReLU()
        self.conv2 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1)
        self.dropout2 = torch.nn.Dropout(p=dropout_rate)

    def forward(self, inputs):
        outputs = self.dropout2(self.conv2(self.relu(self.dropout1(self.conv1(inputs.transpose(-1, -2))))))
        outputs = outputs.transpose(-1, -2) # as Conv1D requires (N, C, Length)
        outputs += inputs
        return outputs

实际调用:PointWiseFeedForward(args.hidden_units, args.dropout_rate)

PS:
1.Conv1d:一维卷积。这里用了d个一维卷积,本质上是一个带共享权重的d*d矩阵的线性层。
详细可参考:pytorch之nn.Conv1d详解
在这里插入图片描述
2.input.transpose(dim0, dim1)等价于torch.transpose(input, dim0, dim1):将这两个给定维度互换。
详细可参考:torch.transpose()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/664305.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MATLAB函数模块光显示zeros/poles怎么办?

出现下面这种图了怎么办&#xff1f;是做错了吗&#xff1f; 这种图就是它显示不完整了&#xff0c;把它拉大点就可以完全显示了。

编辑任何场景! 3DitScene:通过语言引导的解耦 Gaussian Splatting开源来袭!

文章&#xff1a;https://arxiv.org/pdf/2405.18424 项目&#xff1a;https://zqh0253.github.io/3DitScene/ huggingface:https://huggingface.co/spaces/qihang/3Dit-Scene 场景图像编辑在娱乐、摄影和广告设计中至关重要。现有方法仅专注于2D个体对象或3D全局场景编辑&…

harbor -- docker私有仓库安装配置

1 安装docker-compose $ curl -L "https://get.daocloud.io/docker/compose/releases/download/v1.25.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose $ chmod x /usr/local/bin/docker-compose 2 安装配置harbor $ wget https://g…

Windows11 wsl2编译Android14 使用ASfP Debug windows上启动的模拟器

wsl2的安装和配置 安装&#xff1a; 直接百度搜索最新的wsl2安装教程即可&#xff0c;官网&#xff1a;https://learn.microsoft.com/zh-cn/windows/wsl/install 1. 启用适用于 Linux 的 Windows 子系统(以管理员身份打开 PowerShell 并运行) Enable-WindowsOptionalFeature…

网络安全岗秋招面试题及面试经验分享

Hello&#xff0c;各位小伙伴&#xff0c;我作为一名网络安全工程师曾经在秋招中斩获&#x1f51f;个offer&#x1f33c;&#xff0c;并在国内知名互联网公司任职过的职场老油条&#xff0c;希望可以将我的面试的网络安全大厂面试题和好运分享给大家~ 转眼2024年秋招又快到了金…

【学习】软件测试中如何进行Web网页兼容性测试

在数字时代&#xff0c;Web网页作为信息传递和交流的重要平台&#xff0c;其稳定性和用户体验至关重要。如同一位匠人细致打磨他的工艺品&#xff0c;开发者亦需精心测试网页的兼容性&#xff0c;确保其在各种设备和浏览器上的表现无懈可击。今天&#xff0c;我们就来探讨如何对…

启智CV机器人,ROS, ubuntu 18.04

资料&#xff1a; https://wiki.ros.org/kinetic/Installation/Ubuntu https://blog.csdn.net/qq_44339029/article/details/120579608 http://wiki.ros.org/melodic/Installation/Ubuntu https://github.com/6-robot/wpb_cv 一、安装ros环境 装VM。 装ubuntu18.04 desktop.…

【赠书第27期】向AI提问的艺术:提示工程入门与应用

文章目录 前言 1 问题的构建 1.1 明确性与具体性 1.2 结构化与层次性 1.3 相关性与针对性 2 提问的技巧 2.1 简洁明了 2.2 避免歧义 2.3 使用自然语言 3 与AI的互动策略 3.1 耐心与理解 3.2 逐步引导 3.3 反馈与调整 4 总结与展望 5 推荐图书 6 粉丝福利 前言 …

uni-app实现页面通信EventChannel

uni-app实现页面通信EventChannel 之前使用了EventBus的方法实现不同页面组件之间的一个通信&#xff0c;在uni-app中&#xff0c;我们也可以使用uni-app API —— uni.navigateTo来实现页面间的通信。注&#xff1a;2.8.9 支持页面间事件通信通道。 1. 向被打开页面传送数据…

XX集团信息(IT)战略和规划项目(154页PPT)

方案介绍&#xff1a; 本集团信息&#xff08;IT&#xff09;战略与规划项目方案是集团数字化转型和信息化建设的重要组成部分。通过本方案的实施&#xff0c;我们将为集团的长期发展提供坚实的信息化支撑&#xff0c;提高集团的管理水平和运营效率&#xff0c;增强企业的竞争…

来聊聊Redis中的字符串对象的设计

写在文章开头 redis对于性能的追求做到了极致,在之前的文章中我们redis的简单动态字符串SDS进行了详细的介绍了,而本文我将从顶层的视角来聊聊Redis基于SDS等数据结构实现一个平衡时间与空间的字符串对象。 Hi,我是 sharkChili ,是个不断在硬核技术上作死的 java coder ,…

2024年最具性价比宠物空气净化器推荐!小米、希喂、安德迈真实测评

一款理想的宠物空气净化器应该具备去除浮毛和异味等基本功能&#xff0c;但要找到一款既满足个人需求、性能出色且性价比高的产品&#xff0c;这需要一定的选择技巧。 遗憾的是&#xff0c;许多人在购买时由于对相关术语的不熟悉或缺乏挑选经验&#xff0c;可能会买到不适合自…

Java流与链表:探索java.util.stream与LinkedList的交汇点

在现代Java开发中&#xff0c;流&#xff08;Streams&#xff09;和链表&#xff08;LinkedList&#xff09;都是强大且常用的数据处理工具。java.util.stream提供了高效的方式来处理数据流&#xff0c;而LinkedList则是java.util包中的经典集合实现。本文将探索它们的交汇点&a…

C# PaddleOCR 单字识别效果

C# PaddleOCR 单字识别效果 效果 说明 根据《百度办公文档识别C离线SDKV1.2用户接入文档.pdf》&#xff0c;使用C封装DLL&#xff0c;C#调用。 背景 为使客户、第三方开发者等能够更快速、方便的接入使用百度办公文档识别 SDK、促进百度 OCR产品赋能更多客户&#xff0c;特设…

[初始计算机]——计算机网络的基本概念和发展史及OSI参考模型

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;网络通信基础TCP/IP专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年5月30日11点59分 &#x1f004;️文章质量&#xff1a;96分 ​ 目录 &#x1f310;计算机网络概述 &#x1f4af;…

定点化和模型量化(二)

1.量化器的种类——均匀/ https://arxiv.org/pdf/1806.08342 1.1 Uniform Affine Quantizer 这是一种最朴素的量化&#xff1a; s表示step&#xff0c;可以看作量化的最小单位&#xff1b;z是zero point&#xff0c;因为当浮点x0时&#xff0c;对应的量化结果就是z。 可以看…

【SQL学习进阶】从入门到高级应用(七)

文章目录 ✨数据处理函数✨if函数✨cast函数✨加密函数 ✨分组函数✨max✨min✨avg✨sum✨count✨分组函数组合使用✨分组函数注意事项 ✨分组查询✨group by✨having✨组内排序 ✨总结单表的DQL语句 &#x1f308;你好呀&#xff01;我是 山顶风景独好 &#x1f495;欢迎来到我…

推荐系统三十六式学习笔记:01|你真的需要个性化推荐系统吗?

目录 什么是推荐系统你需要推荐系统吗总结 什么是推荐系统 让我们来换一个角度回答三个问题&#xff0c;从而重新定义什么是推荐系统: 1、它能做什么&#xff1f; 2、它需要什么&#xff1f; 3、它怎么做。 对于第一个问题“它能做什么”&#xff0c;我的回答是&#xff1a;推…

跨境电商如何收款?6大常用收款方式对比!

收款是跨境中关键的一环&#xff0c;选择一个安全、高效、成本合理的收款工具很重要。每个跨境人都要先想好选择合适的收款方式&#xff0c;今天就给跨境人们总结了6个主流的跨境收款工具&#xff0c;大家可以根据自己的实际情况进行对比选择。 1、PayPal 适用平台&#xff1a;…

Vue3使用mitt进行组件通信

mitt&#xff1a;事件总线&#xff0c;是第三方插件。 Vue2.x 使用 EventBus 事件总线进行兄弟组件通信&#xff0c;而在Vue3中 EventBus 事件总线模式已经被移除&#xff0c;官方建议使用外部的、实现了事件触发器接口的库&#xff0c;例如 mitt 或 tiny-emitter。 比起 Vue…