决策树模型-预测用户是否购买某母婴产品

1,场景描述

假设我们是京东的数据分析师,负责分析母婴产品的购买行为。我们想预测用户是否会购买一款新上线的母婴产品。为了进行预测,我们将利用用户的历史购买数据、浏览行为和其他特征,通过决策树模型进行分析,并提供相应的营销策略建议。

2,具体需求

  1. 模拟用户数据:包括用户年龄、是否有孩子、浏览母婴产品的频率、历史购买金额、是否参加过促销活动等。
  2. 构建决策树模型:根据这些数据训练决策树模型,预测用户是否会购买新产品。
  3. 模型评估与分析:对模型进行评估,并根据模型的结果提供建议。

3,具体代码

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
from sklearn import tree

# 模拟用户数据
np.random.seed(42)
num_samples = 1000
data = {
    'age': np.random.randint(18, 45, num_samples),
    'has_kids': np.random.choice([0, 1], num_samples),
    'browse_frequency': np.random.randint(1, 30, num_samples),  # 浏览母婴产品频率(次/月)
    'purchase_history_amount': np.random.uniform(100, 5000, num_samples),  # 历史购买金额
    'participated_promotion': np.random.choice([0, 1], num_samples),  # 是否参加过促销活动
    'bought_new_product': np.random.choice([0, 1], num_samples, p=[0.7, 0.3])  # 是否购买新产品
}
df = pd.DataFrame(data)

# 切割自变量和因变量
X = df.drop('bought_new_product', axis=1)
y = df['bought_new_product']

# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 训练决策树模型
clf = DecisionTreeClassifier(max_depth=4, random_state=42)
clf.fit(X_train, y_train)

# 预测
y_pred = clf.predict(X_test)

# 评估模型
print("分类报告:")
print(classification_report(y_test, y_pred))

print("混淆矩阵:")
print(confusion_matrix(y_test, y_pred))

# 绘制决策树
plt.figure(figsize=(20,10))
tree.plot_tree(clf, feature_names=X.columns, class_names=['Not Bought', 'Bought'], filled=True)
plt.show()

# 模型结果分析与建议
def analyze_feature_importance(model, feature_names):
    importance = model.feature_importances_
    feature_importance = pd.DataFrame({'feature': feature_names, 'importance': importance})
    return feature_importance.sort_values(by='importance', ascending=False)

feature_importance = analyze_feature_importance(clf, X.columns)
print("特征重要性:")
print(feature_importance)

# 建议
print("建议:")
print("1. 根据特征重要性分析,历史购买金额和浏览母婴产品的频率对新产品购买行为有较大影响,应重点关注这些高频浏览和高消费的用户。")
print("2. 对于没有孩子但有较高浏览频率的用户,可以推送相关的促销活动,增加购买可能性。")
print("3. 针对参加过促销活动但未购买新产品的用户,分析促销活动的效果,优化活动策略。")
print("4. 通过数据分析识别出高潜力用户,重点进行精准营销,提高新产品的销售量。")

0c8b69fe9ac746ed9cb55e44125b2077.png

4,代码解释

  1. 模拟用户数据:生成了包含用户年龄、是否有孩子、浏览母婴产品的频率、历史购买金额、是否参加过促销活动和是否购买新产品的数据集。
  2. 数据预处理:将数据集分为自变量和因变量,并将数据集分为训练集和测试集。
  3. 训练模型:使用训练集训练决策树模型,并使用测试集进行预测。
  4. 评估模型:输出分类报告和混淆矩阵,评估模型性能。
  5. 绘制决策树:展示决策树结构,帮助理解模型的决策过程。
  6. 特征重要性分析:分析各特征对新产品购买行为的重要性,提供有针对性的营销建议。

5,分析结果与建议

通过对决策树模型的分析,可以得到以下建议:

  1. 重点关注高频浏览和高消费的用户:这些用户更有可能购买新产品,应针对他们制定个性化的营销策略。
  2. 推送相关促销活动:对于没有孩子但浏览频率较高的用户,可以推送相关的促销活动,以提高他们的购买意愿。
  3. 优化促销活动:分析参加过促销活动但未购买新产品的用户,了解促销活动效果,进一步优化促销策略。
  4. 精准营销:通过数据分析识别高潜力用户,进行精准营销,提升新产品的销售量。

通过这样的分析,可以帮助京东更好地了解用户的购买行为,从而制定更有效的营销策略,提高新产品的销售业绩。

(交个朋友/技术接单/ai办公/性价比资源)

d32d8cb89f6b4e2bb6fc5c6c109df305.png

 

 

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/661017.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【开源项目】Excel数据表自动生成工具v1.0版

一、介绍 Excel数据表自动生成工具是Go语言编写的一款小型工具软件,用于将特定的Excel表格内容导出为多种编程语言的代码或可以直接读取的数据内容。 开源Github地址:https://github.com/SkyCreator/goproj 二、版本v1.0功能概览 1.编程语言支持 目前…

【因果推断python】2_因果关系初步2

目录 偏差 关键思想 偏差 偏差是使关联不同于因果关系的原因。幸运的是,我们的直觉很容易理解。让我们在课堂示例中回顾一下我们的平板电脑。当面对声称为孩子提供平板电脑的学校会获得更高考试成绩的说法时,我们可以反驳说,即使没有平板电…

力扣:104. 二叉树的最大深度

104. 二叉树的最大深度 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入&#xff1a…

手机投屏技巧:手机怎么投屏到电脑显示屏上?精选6招解决!

手机怎么投屏到电脑显示屏上?出于一些不同的原因,大多数人都希望能将手机投屏到电脑上。其中一个常见的原因是,大家经常会希望在笔记本电脑上共享图片,而无需上传或者登录微信进行文件传输。以及希望不依靠投影仪,就能…

Jetpack架构组件_5.BindingAdapter

1.BindingAdapter介绍 Binding adapters 可以作为一个设置某个值的框架来使用,databinding 库可以允许指定具体的方法来进行相关值的设置,在该方法中可以做一些处理逻辑,Binding adapters 会最终给你想要的结果。Android Databinding框架中已…

微信网页版登录插件v1.1.1

说到如今的微信客户端,大家肯定会有很多提不完的意见或者建议。比如这几年体积越来越大,如果使用频率比较高,那占用空间就更离谱了。系统迷见过很多人电脑C盘空间爆满,都是由于微信PC版造成的。 而且,它还加了很多乱七…

甩掉接口文档烦恼!Spring Boot 集成 Knife4j,轻松玩转 API 可视化

一、引言:跟接口文档说拜拜 👋 作为一名 Java 开发者,你是否还在为编写繁琐的 API 文档而头疼?传统的手动编写方式不仅耗时费力,而且容易出错,难以维护。今天,我们就来介绍一款神器 Knife4j&am…

【5.基础知识和程序编译及调试】

一、GCC概述:是GUN推出的多平台编译器,可将C/C源程序编译成可执行文件。编译流程分为以下四个步骤: 1、预处理 2、编译 3、汇编 4、链接 注:编译器根据程序的扩展名来分辨编写源程序所用的语言。根据不同的后缀名对他们进行相…

AIOps在线评测基准首阶段建设完成,面向社区发布真实运维数据!

本文根据必示科技算法研究员、产品总监聂晓辉博士在2024 CCF国际AIOps挑战赛线下宣讲会上的演讲整理成文。 2024年1月份OpenAIOps社区成立,随着越来越多的社区成员加入,各项工作在有条不紊的推进中。在线评测基准系统(AIOps Live Benchmark&a…

在IDEA中配置servlet(maven配置完成的基础下)

在IDEA中配置servlet&#xff08;maven配置完成的基础下&#xff09; 1.先新建一个项目 2.选择尾巴是webapp的&#xff0c;名称自定义 3.点击高级设置&#xff0c;修改组id 点击创建&#xff0c;等待jar包下载完成。在pom.xml中配置以下 <dependency><groupId>ja…

方法的重写--5.29

当子类对父类的方法不满意时&#xff0c;可以进行重写&#xff0c;但是方法名字要与父类一样。 举例&#xff0c;我用people来举例&#xff0c;我是打工人&#xff0c;然后再创一个student类&#xff0c;重写方法我不是打工人&#xff0c;我是读书人。代码如下&#xff0c;发现…

基于51单片机的室内空气质量检测-仿真设计

本设计是基于单片机的空气质量检测设计&#xff0c;主要实现以下功能&#xff1a; 可实现通过SGP30测量二氧化碳及甲醛浓度&#xff0c;当超过设置的最大值时&#xff0c;进行报警及通风和净化空气处理 可实现通过MQ-4测量甲烷浓度&#xff0c;当超过设置的最大值时&#xff0…

网工内推 | 国企信息安全工程师,CISP认证优先

01 浙江省公众信息产业有限公司 &#x1f537;招聘岗位&#xff1a;安全运营工程师 &#x1f537;职责描述&#xff1a; 1. 负责公司内部安全运营平台及其子系统的安全事件管理、事件发现分析、应急响应和系统维护等&#xff1b; 2. 负责风险和漏洞管理&#xff0c;包括漏洞预…

Marin说PCB之如何在主板上补偿链路中的走线的等长误差?

一场雨把我困在这里&#xff0c;你冷漠地看我没有穿雨衣淋成落汤鸡。今天刚刚出门时候看天气预报没有雨&#xff0c;于是我就没有带雨衣骑电动车去公司了&#xff0c;谁知道回来的路上被淋成狗了。天气预报就像是女人的脾气那样&#xff0c;不能完全相信的。 好了&#xff0c;我…

Android 13 VSYNC重学习

Android 13 VSYNC重学习 引言 学无止境&#xff0c;一个字干就完事&#xff01; 源码参考基于Android 13 aosp&#xff01; 一. Android VSync模块开胃菜 在开始正式的分析之前&#xff0c;我们先简单对Android的Vsync模块简单介绍下,如下图所示&#xff0c;其中: HW_VSync是…

基础—SQL—DQL(数据查询语言)基础查询

一、引言 1、介绍&#xff1a; 分类全称描述DQL英文全称&#xff1a;Data Query Language(数据查询语言)主要是学习对数据库表中的记录进行查询的语句 2、讲解 日常的开发中或者对于一个正常的业务系统中&#xff0c;对于查询的操作次数是远远多于数据的增删改的频次。例如…

图片转excel表格工具的工具,分享3个专业的识别软件!

在数字化时代&#xff0c;我们时常面临将图片中的表格数据转换为可编辑的Excel表格的需求。无论是工作中的数据整理&#xff0c;还是学习中的资料汇总&#xff0c;这一需求都显得尤为迫切。幸运的是&#xff0c;市面上已经涌现出众多优秀的图片转Excel表格工具&#xff0c;它们…

前端渲染页面的原理

之前一直不愿意写一篇关于原理的&#xff0c;因为说起来实在是太繁杂&#xff0c;要写得细&#xff0c;码字梳理&#xff0c;计算下来起码都要差不多三周。以前一直躲避这个事情&#xff0c;现在反正有时间&#xff0c;为了不荒废自己&#xff0c;那就从头捋一遍。也方便自己后…

MyBatis系统学习 - 使用Mybatis完成查询单条,多条数据,模糊查询,动态设置表名,获取自增主键

上篇博客我们围绕Mybatis链接数据库进行了相关概述&#xff0c;并对Mybatis的配置文件进行详细的描述&#xff0c;本篇博客也是建立在上篇博客之上进行的&#xff0c;在上面博客搭建的框架基础上&#xff0c;我们对MyBatis实现简单的增删改查操作进行重点概述&#xff0c;在MyB…

基于 FastAI 文本迁移学习的情感分类(93%+Accuracy)

前言 系列专栏:【深度学习&#xff1a;算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域&#xff0c;讨论了各种复杂的深度神经网络思想&#xff0c;如卷积神经网络、循环神经网络、生成对…