【用于全变分去噪的分裂布雷格曼方法】实施拆分布雷格曼方法进行总变异去噪研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

拆分布雷格曼方法(Split Bregman Method)是一种用于全变分去噪的迭代算法。它通过最小化经过全变差正则化的优化问题来实现去噪。以下是实施拆分布雷格曼方法进行全变差去噪的步骤如下:

1. 数据准备:将待去噪的图像表示为二维矩阵或张量形式。如果图像是彩色的,可以将其转换为灰度图像。

2. 定义目标函数:构建优化问题目标函数,将待去噪的图像的全变差作为正则化项。目标函数的形式可能因具体问题而异,但一般形式为最小化损失函数(例如均方差损失)和全变差正则化项之和。

3. 拆分变量:将图像分解为两个变量,通常记为u和v,其中u是去噪后的图像,v是对图像梯度的估计。

4. 迭代求解:使用拆分布雷格曼方法迭代求解优化问题。具体步骤如下:
   a. 固定u,更新v:在保持u不变的情况下,根据当前v的值,通过解决子问题来更新v。这通常涉及到用梯度算子计算图像梯度,并应用软阈值来减少噪声。
   b. 固定v,更新u:在保持v不变的情况下,根据当前u和v的值,通过解决子问题来更新u。这通常涉及到通过最小化目标函数来求解图像u的最优解。
   c. 更新v:更新v的值,将其设置为当前图像u的梯度。
   d. 迭代以上步骤,直到达到收敛条件。

5. 返回结果:在迭代收敛后,得到的最终图像u即为去噪后的结果。

通过拆分布雷格曼方法,可以实现全变差去噪,并获得去噪后的图像。该方法在图像处理和计算机视觉领域得到广泛应用,尤其对于去除噪声并保持图像细节的有效性很好。请注意,具体的算法细节和参数选择可能因具体问题而有所不同。

📚2 运行结果

部分代码:

function u = SB_ATV(g,mu)
% Split Bregman Anisotropic Total Variation Denoising
%
%   u = arg min_u 1/2||u-g||_2^2 + mu*ATV(u)
%   
%   g : noisy image
%   mu: regularisation parameter
%   u : denoised image
%


g = g(:);
n = length(g);
[B Bt BtB] = DiffOper(sqrt(n));
b = zeros(2*n,1);
d = b;
u = g;
err = 1;k = 1;
tol = 1e-3;
lambda = 1;
while err > tol
    fprintf('it. %g ',k);
    up = u;
    [u,~] = cgs(speye(n)+BtB, g-lambda*Bt*(b-d),1e-5,100); 
    Bub = B*u+b;
    d = max(abs(Bub)-mu/lambda,0).*sign(Bub);
    b = Bub-d;
    err = norm(up-u)/norm(u);
    fprintf('err=%g \n',err);
    k = k+1;
end
fprintf('Stopped because norm(up-u)/norm(u) <= tol=%.1e\n',tol);
end

function [B Bt BtB] = DiffOper(N)
D = spdiags([-ones(N,1) ones(N,1)], [0 1], N,N+1);
D(:,1) = [];
D(1,1) = 0;
B = [ kron(speye(N),D) ; kron(D,speye(N)) ];
Bt = B';
BtB = Bt*B;
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

 [1]Goldstein and Osher, The split Bregman method for L1 regularized problems
  SIAM Journal on Imaging Sciences 2(2) 2009
 [2]Micchelli et al, Proximity algorithms for image models: denoising
  Inverse Problems 27(4) 2011
[3]李潇瑶,王炼红,周怡聪等.自适应非局部3维全变分彩色图像去噪[J].中国图象图形学报,2022,27(12):3450-3460.

[4]赵鑫春,李碧原,张军.一种改进全变分的图像去噪算法模型[J].计算机辅助工程,2022,31(03):42-48+54.DOI:10.13340/j.cae.2022.03.008.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/65538.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

docker菜谱

DockerHub&#xff1a;https://hub.docker.com/ 记录docker常用软件安装&#xff0c;欢迎大家来投稿。&#x1f60e;&#x1f60e;&#x1f60e; 文章目录 1. Redis2. MariaDB 1. Redis dockerhub:https://hub.docker.com/_/redis 1、下载redis镜像&#xff1a; docker pull r…

【MFC】05.MFC第一大机制:程序启动机制-笔记

MFC程序开发所谓是非常简单&#xff0c;但是对于我们逆向人员来说&#xff0c;如果想要逆向MFC程序&#xff0c;那么我们就必须了解它背后的机制&#xff0c;这样我们才能够清晰地逆向出MFC程序&#xff0c;今天这篇文章就来带领大家了解MFC的第一大机制&#xff1a;程序启动机…

echarts 图表饼状图 实例

效果图&#xff1a; 代码&#xff1a; draw(data1, data2) {var option {// backgroundColor: rgb(10,36,68),color: [#F19611 ,#0095FE,#162D86,#0096FF,#05F8FF,#FFD985,#FACDAA,#F4A49E,#EE7B91,#E85285,#BE408C,#942D93,#171E6D,#1E3388,#27539B,#3073AE,#3993C2,#42B3D…

JVM如何调优

一、JVM内存模型及垃圾收集算法 1.根据Java虚拟机规范&#xff0c;JVM将内存划分为&#xff1a; New&#xff08;年轻代&#xff09; Tenured&#xff08;年老代&#xff09; 永久代&#xff08;Perm&#xff09; 其中New和Tenured属于堆内存&#xff0c;堆内存会从JVM启动参…

day0808

1.单链表实现约瑟夫环 #include "joseph.h" LoopLink list_create(int m) {LoopLink L (LoopLink)malloc(sizeof(Node));if(NULLL){printf("内存创建失败\n");return 0;}LoopLink qL;for(int i1; i<m; i){LoopLink p (LoopLink)malloc(sizeof(Node));…

MyBatis-XML映射文件

XML映射文件 规范 XML映射文件的名称与Mapper接口名称一致&#xff08;EmpMapper对应EmpMpper.xml&#xff09;&#xff0c;并且将XML映射文件和Mapper接口放置在相同包下&#xff08;同包同名&#xff09; ​​​ 在maven项目结构中所有的配置文件都在resources目录之下&…

二级python和二级c哪个简单,二级c语言和二级python

大家好&#xff0c;小编为大家解答二级c语言和二级office一起报可以吗的问题。很多人还不知道计算机二级c语言和python哪个好考&#xff0c;现在让我们一起来看看吧&#xff01; 介绍Python有很多库和使用Qt编写的接口,这自然创建c调用Python的需求。一路摸索,充满艰辛的添加头…

docker compose一键部署lnmt环境

创建docker compose 目录 [rootlocalhost ~]# mkdir -p /compose_lnmt 编写nginx的dockerfile文件 创建目录 [rootlocalhost compose_lnmt]# mkdir -p nginx 编写nginx配置文件 [rootlocalhost nginx]# vim nginx.conf user root; #运行身份#nginx自动设置进程…

Learning Rich Features for Image Manipulation Detection阅读笔记

文章目录 Abstract3.3. 双线性池 Abstract 图像篡改检测与传统的语义目标检测&#xff08;semantic object detection&#xff09;不同&#xff0c;因为它更关注篡改伪影&#xff08;tampering artifacts&#xff09;而不是图像内容&#xff0c;这表明需要学习更丰富的特征。我…

flutter开发实战-实现css线性渐变转换flutter渐变LinearGradient功能

flutter开发实战-实现css线性渐变转换flutter渐变LinearGradient功能 在之前项目开发中&#xff0c;遇到更换样式&#xff0c;由于从服务器端获取的样式均为css属性值&#xff0c;需要将其转换成flutter类对应的属性值。这里只处理线性渐变linear-gradient 比如渐变 “linear-…

Unity 基础函数

Mathf&#xff1a; //1.π-PI print(Mathf.PI); //2.取绝对值-Abs print(Mathf.Abs(-10)); print(Mathf.Abs(-20)); print(Mathf.Abs(1)); //3.向上取整-Ce il To In t float f 1.3f; int i (int)f; …

什么是Milvus

原文出处&#xff1a;https://www.yii666.com/blog/393941.html 什么是Milvus Milvus 是一款云原生向量数据库&#xff0c;它具备高可用、高性能、易拓展的特点&#xff0c;用于海量向量数据的实时召回。 Milvus 基于 FAISS、Annoy、HNSW 等向量搜索库构建&#xff0c;核心是…

java+springboot+mysql校园通讯录管理系统

项目介绍&#xff1a; 使用javaspringbootmysql开发的校园通讯录管理系统&#xff0c;系统包含超级管理员、管理员、用户角色&#xff0c;功能如下&#xff1a; 超级管理员&#xff1a;管理员管理&#xff1b;部门管理&#xff1b;用户管理&#xff1b;留言管理&#xff1b;公…

抽象工厂模式-java实现

介绍 抽象工厂模式基于工厂方法模式引入了“产品族”的概念&#xff0c;即我们认为具体产品是固定的&#xff0c;具体产品存在等级之分&#xff0c;比如我们常说的手机&#xff0c;有“青春版”&#xff0c;“至尊版”&#xff0c;“至臻版”。一个产品有多个版本族。这时候&a…

ROS实现自定义信息以及使用

常见的消息包 消息包定义一般如下&#x1f447; &#xff08;1&#xff09;创建包和依赖项 &#xff08;2&#xff09;在新建的qq_msgs的包新建msgs的文件夹&#xff0c;在该文件夹里面新建Carry.msg类型的文件。 其实&#xff0c;Carry.msg就是你自己定义的消息类型&am…

vue3项目中引入dialog插件,支持最大最小化、还原、拖拽

效果图&#xff1a; 上图是layui-vue组件库中的layer插件&#xff0c;我的项目使用的是element-plus组件库&#xff0c;在用不上layui组件库的情况下&#xff0c;就单独引入layui/layer-vue这个弹层插件就可以了 npm地址&#xff1a;layui/layer-vue - npm layui-vue组件库地址…

数仓架构模型设计参考

1、数据技术架构 1.1、技术架构 1.2、数据分层 将数据仓库分为三层&#xff0c;自下而上为&#xff1a;数据引入层&#xff08;ODS&#xff0c;Operation Data Store&#xff09;、数据公共层&#xff08;CDM&#xff0c;Common Data Model&#xff09;和数据应用层&#xff…

组合模式(C++)

定义 将对象组合成树形结构以表示部分-整体’的层次结构。Composite使得用户对单个对象和组合对象的使用具有一致性(稳定)。 应用场景 在软件在某些情况下&#xff0c;客户代码过多地依赖于对象容器复杂的内部实现结构&#xff0c;对象容器内部实现结构(而非抽象接口)的变化…

设计模式(3)装饰模式

一、介绍&#xff1a; 1、应用场景&#xff1a;把所需的功能按正确的顺序串联起来进行控制。动态地给一个对象添加一些额外的职责&#xff0c;就增加功能来说&#xff0c;装饰模式比生成子类更加灵活。 当需要给一个现有类添加附加职责&#xff0c;而又不能采用生成子类的方法…

(树) 剑指 Offer 34. 二叉树中和为某一值的路径 ——【Leetcode每日一题】

❓ 剑指 Offer 34. 二叉树中和为某一值的路径 难度&#xff1a;中等 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a…