2024年新算法-秘书鸟优化算法(SBOA)优化BP神经网络回归预测

2024年新算法-秘书鸟优化算法(SBOA)优化BP神经网络回归预测

 亮点:

输出多个评价指标:R2,RMSE,MSE,MAPE和MAE

满足需求,分开运行和对比的都有对应的主函数:main_BP, main_SBOA, main_BPvsBP_SBOA,并且详细中文注释

方便快捷:替换excel数据即可运行自己的数据集

出图丰富:不仅有预测结果对比,还有预测误差的可视化

一. 秘书鸟优化算法(Secretary bird optimization algorithm, SBOA)

摘要:受秘书鸟在自然环境中的生存行为启发,提出一种新的基于种群的元启发式算法——秘书鸟优化算法(SBOA)。秘书鸟的生存包括持续猎食和躲避捕食者的追捕。这些信息对于提出一种新的元启发式算法至关重要,该算法利用秘书鸟的生存能力来解决现实世界的优化问题。该算法的探索阶段模拟秘书鸟捕食蛇,而利用阶段模拟它们逃离捕食者。在此阶段,秘书鸟类会观察环境,并选择最合适的方式到达安全的栖息地。这两个阶段在满足终止准则的前提下反复迭代,以找到优化问题的最优解。为了验证SBOA的性能,从收敛速度、收敛行为等方面进行了实验评估。此外,将SBOA与15种先进算法在CEC-2017和CEC-2022测试集上进行了比较。测试结果表明,SBOA在求解质量、收敛速度和稳定性方面均表现出了优异的性能。最后,利用SBOA求解12个约束工程设计问题,对无人机进行三维航迹规划。结果表明,与对比优化器相比,所提出的SBOA可以以更快的速度找到更好的解决方案,展示了其在解决现实世界优化问题方面的巨大潜力。

参考文献:Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems

Doi: 10.1007/s10462-024-10729-y

二、BP神经网络

在今天的数字化时代,BP神经网络(反向传播神经网络)成为了机器学习和人工智能领域的一项重要技术。这种网络模型通过模仿人脑的处理方式,能够学习并解决复杂的非线性问题,是许多现代AI应用的基础。BP神经网络通过其多层结构处理信息,每一层由多个神经元组成,神经元之间通过“权重”和“偏置”参数相连接。这些参数在网络的训练初期被随机初始化,以引入必要的随机性,帮助网络有效避开局部最优解,探索全局最优解。训练过程中,网络通过输入样本进行前向传播,计算输出误差,然后通过反向传播算法调整权重和偏置,逐步减少误差,优化模型性能。这一过程不断重复,直至网络达到预期的准确性。BP神经网络的强大功能使其在回归/分类、图像识别、语音处理、自然语言处理等多个领域得到广泛应用。随着技术的不断进步,BP神经网络仍将在智能化探索中扮演重要角色,推动科技创新的边界不断拓展。

三、SBOA-BP神经网络

在追求神经网络最优性能的过程中,参数优化扮演着核心角色。传统的梯度下降法虽广泛应用于网络训练,但在某些复杂的回归预测任务中,它们常受限于慢速收敛和陷入局部最优。引入基于秘书鸟方法的优化器(SBOA),我们提供了一种高效的替代方案,特别适合处理具有复杂数据问题。通过建立目标函数,对神经网络的权重和偏置进行优化,得到更好的模型。

四、实验结果

数据集使用的是波士顿房价数据集,可以直接替换数据运行自己的数据集:

点击mian_BP运行结果,并且输出评价指标R2,RMSE,MSE,MAPE和MAE:

点击main_SBOA运行结果如下,并且输出评价指标R2,RMSE,MSE,MAPE和MAE:

SBOA收敛曲线如下:

点击mainBPvsBPSBOA运行结果,并且输出评价指标R2,RMSE,MSE,MAPE和MAE:

所有图片:

预测结果对比图:

预测误差对比图:

所有评价指标:

部分代码如下:

warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%  导入数据
data = xlsread('回归预测_BostonHousing.xlsx');
% 计算数据集行数和列数
[num_rows, num_columns] = size(data);
%  划分训练集和测试集
temp = randperm(num_rows); % 打乱数据集
num_train = round(0.8*num_rows); % 百分之80作为训练集
P_train = data(temp(1: num_train), 1: num_columns-1)';
T_train = data(temp(1: num_train), num_columns)';
M = size(P_train, 2);
P_test = data(temp(num_train: end), 1: num_columns-1)';
T_test = data(temp(num_train: end), num_columns)';
N = size(P_test, 2);
%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%  节点个数
inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train,1);   % 输出层节点数
%  建立网络
net = newff(p_train, t_train, hiddennum);
%  设置训练参数
net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口

五、完整代码获取

2024年新算法-秘书鸟优化算法(SBOA)优化BP神经网络回归预测icon-default.png?t=N7T8https://mbd.pub/o/bread/ZpaUmZdv

原创改进算法添加shudongyouma,可使用迭代次数、评估次数,可以改进经典的,先进的算法,所有结果和图一键运行出来。

可做回归/分类预测

论文、SCI、EI、核心、学报、普刊、会议、专利、软著等均可提供辅导。

目前改进海洋捕食者、雪融和小龙虾已售,绝不二次销售。

部分理论来源于网络,如有侵权,请联系删除。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/654423.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

书生·浦语第二期-笔记2

课程链接:https://github.com/InternLM/Tutorial/tree/camp2 视频地址:轻松玩转书生浦语大模型趣味Demo_哔哩哔哩_bilibili 大模型及InternLM介绍 大模型:人工智能领域中参数数量巨大、拥有庞大计算能力和参数规模的模型 特点&#xff1a…

使用ssh连接ubuntu

一、下载连接工具 常见的连接工具右fianlshell、xshell等等。在本文章中使用的finalshell,工具可以去官网上下载,官网下载。 二、Ubuntu中配置shh 1、使用下面指令更新软件包(常用于下载安装或更新软件时使用,更新到最新的安装…

【鸟叔的Linux私房菜】2-主机规划与磁盘分区

文章目录 2.1 Linux与硬件的搭配各硬件设备在Linux的文件名使用虚拟机学习 2.2 磁盘分区磁盘连接方式和设备文件名的关系MBR(MS-DOS)与GPT磁盘分区表MBR(MS-DOS)GPT磁盘分区表 启动流程的BIOS与UEFI启动检测程序BIOS搭配MBR/GPT的启动流程UEFI BIOS搭配 GPT启动的流程 Linux安装…

B站pink老师HTML5基础(一)

文章目录 一、网页1.什么是网页2.什么是HTML二、常用浏览器 三、Web标准四、HTML标签1.HTML基本结构标签 五、快捷键六、常用标签1.标题标签2.段落和换行标签3.文本格式化标签4.div标签和span标签5.图像标签6.图像路径7.超链接标签8.特殊字符 一、网页 1.什么是网页 2.什么是H…

Mybatis入门——其他查询操作和数据库连接池(4)

目录 一、多表查询 二、#{} 和 ${} 1、#{} 和 ${} 的使用 (1)Integer类型的参数 #{} 的使用 ${} 的使用 (2)使用String类型的参数 #{} 的使用 ${} 的使用 小结: 2、#{} 和 ${} 的区别 (1&#…

3、python安装-linux系统下

安装前置依赖软件,安装完成后,打开官网,下载linux系统下的python安装包: 选择最新的版本 点击最新版本,进入版本对应的界面, 选择第一个进行源码的编译,右键选择复制连接地址, 回到终…

懒人创业秘诀揭秘:加入萤瓴优选项目,普通人也能打开财富大门

创业对于很多人来说,是一个艰难而复杂的过程。然而,时代的发展带来了新的机遇,懒人创业成为了一种趋势。加入萤瓴优选项目,普通人也能轻松打开财富大门。本文将揭秘懒人创业的秘诀,并分析萤瓴优选项目如何帮助普通人实…

Thingsboard规则链:Switch节点详解

在物联网(IoT)领域,数据的高效处理与自动化决策是构建智能系统的核心。作为一款强大的物联网平台,Thingsboard通过其规则引擎为开发者提供了高度灵活的工具,其中Switch节点是实现消息条件路由的关键组件。本文将全方位…

[leetcode hot 150]第五十六题,合并区间

题目: 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。 思路: 这道题目要求合并一…

从技术的角度剖析Nginx框架

众所周知,nginx 性能高,而 nginx 的高性能与其架构是分不开的。 1、nginx 多进程模式架构 nginx 启动后,会有一个master 进程和多个 worker 进程。 master 进程用来管理 worker 进程,功能包含:接收来自外界的信号&a…

智能跳绳的产品体验与思考(一)

我,虽称不上跳绳高手,却对这项运动怀有深厚的热爱,也曾在某电商平台上选购过一款智能跳绳,希望能借此提升我的跳绳技巧。今天,咱们就来聊聊我和这条绳子的发生的一些故事,外加我的一些思考。 此刻&#xf…

如何利用 Selenium 对已打开的浏览器进行爬虫

大家好! 在对某些网站进行爬虫时,如果该网站做了限制,必须完成登录才能展示数据,而且只能通过短信验证码才能登录 这时候,我们可以通过一个已经开启的浏览器完成登录,然后利用程序继续操作这个浏览器&…

K8s集群中的Pod调度约束亲和性与反亲和性

前言 在 K8s 集群管理中,Pod 的调度约束——亲和性(Affinity)与反亲和性(Anti-Affinity)这两种机制允许管理员精细控制 Pod 在集群内的分布方式,以适应多样化的业务需求和运维策略。本篇将介绍 K8s 集群中…

BookxNote Pro 宝藏 PDF 笔记软件

一、简介 1、BookxNote Pro 是一款专为电子书阅读和学习笔记设计的软件,支持多种电子书格式,如PDF和EPUB,能够帮助用户高效地管理和阅读电子书籍,同时具备强大的笔记功能,允许用户对书籍内容进行标注、摘录和思维导图绘…

Shell编程中的循环语句和函数

一、for循环语句 当面对各种列表重复任务时,使用简单的if语句已经难以满足需求,这时就需要for循环语句。for语句的结构为: for 变量 in 取值列表 do 命令序列 done 使用for循环语句时,需要指定一个变量及取值列表,针对…

【经验分享】可视化的项目管理,轻松解决资源冲突和协作困难

在数字化时代,高效协同逐步成为提升组织效能的重要着力点,同时也是企业保持竞争力、实现持续发展的关键要素。一方面可以打破部门壁垒,促进信息流通,从而提升整体工作效率;另一方面还能帮助企业优化资源配置和管理流程…

快团团帮卖团长怎么对供货大团长进行评分?

都说帮卖“躺赚”? 一旦遇团不淑,惨遭不靠谱团长挖坑,售后拖延、发货慢、产品瑕疵…… 加上顾客夺命连环催,双面夹击,夹缝生存。供货团长靠不靠谱太重要了! 快团团供货团长评分系统上线! 帮卖团…

什么是erp仓储管理系统?ERP系统的价值体现在哪些方面?

ERP仓储管理系统是一个帮助企业管理仓库的工具。想象一下,如果你是一个仓库管理员,里面堆满了各种各样的产品和货物,如何确保这些产品数量准确、摆放有序,以及快速找到自己需要的产品呢? 这时,如果企业引用…

GitLab项目中添加用户,并设置其角色权限等

注意:创建用户(new user),创建完用户然后再项目邀请用户,选择创建过的用户 一、以管理员身份登录GitLab的WebUI并创建用户 1>.使用管理员登录GitLab 使用管理员(root)用户登录成功后,点击如下图所示的小扳手,点击…

NameSilo + Cloudflare 给网站加个域名(附 NameSilo 购买域名优惠码)

网站做好了之后,下一步就是买域名 在国内买域名的话,还需要备案,个人名下备案好像是还有限制,我就去 NameSilo 上面买的 在买之前,对比过几家 比如: godaddy/namecheap/cloudflare 本来是倾向于在 godaddy 上面买的,因为它支持支付宝支付,但是在详细看的时候,发现如果购买一年…