K8s集群中的Pod调度约束亲和性与反亲和性

前言

在 K8s 集群管理中,Pod 的调度约束——亲和性(Affinity)与反亲和性(Anti-Affinity)这两种机制允许管理员精细控制 Pod 在集群内的分布方式,以适应多样化的业务需求和运维策略。本篇将介绍 K8s 集群中 Pod 调度的亲和与反亲和的概念以及相关案例。

目录

一、Pod 生命周期

1. 概述

2. 图示

3. 介绍

二、调度约束

1. 概述

2. Pod 启动典型创建过程(工作机制)

2.1 图示

2.2 创建过程

三、调度过程介绍

1. 关注的问题

2. 调度策略

2.1 分类

2.2 Predicate(预选)常见算法

2.3 priorities(优选)常见算法

3. 指定调度节点

3.1 nodeName 调度

3.2 nodeSelector 调度

3.3 区别

4. k8s 节点的标签管理

5. node 亲和性

5.1 概述

5.1.1 节点亲和性(Node Affinity)

5.1.2 Pod 亲和性(Pod Affinity)

5.2 硬策略和软策略 

5.2.1 硬策略

5.2.2 软策略

5.3 键值运算关系

5.4 示例

示例1:node 硬策略

示例2:node 软策略 

示例3:node 软策略权重配置

示例4:node 硬策略软策略组合

示例5:node 硬策略软策略组合,硬策略条件不满足

6. Pod 亲和性与反亲和性

6.1 概述

6.2 node 亲和性、pod 亲和性与反亲和性对比

6.3 亲和性示例

6.4 反亲和性示例


一、Pod 生命周期

1. 概述

Pod 的生命周期是指从 Pod 被创建到最终被销毁的整个过程,涉及多个阶段和状态转换,以及可能执行的各种操作。

2. 图示

3. 介绍

Pod 生命周期/启动过程

① 首先,由 pid 为1的 init 容器(pause容器)管理整个容器的初始化

② 接着,init 容器串行启动

③ 容器启动时执行 postStart 操作

④ 随后启动存活探针和就绪探针

⑤ 根据资源限制的 request 和 limit 启动应用容器

⑥ 最后,在容器退出时执行 preStop 操作

二、调度约束

1. 概述

Kubernetes 中各组件通过 List-Watch 机制协作,保持数据同步且解耦。用户通过 kubectl 向 APIServer 发送命令,在 Node 节点上创建 Pod 和 Container。部署过程需要 Controller Manager、Scheduler 和 kubelet 协同工作。所有部署信息存储在 etcd 中,etcd 向 APIServer 发送 Create 事件,实现信息同步和协作。

2. Pod 启动典型创建过程(工作机制)

2.1 图示

2.2 创建过程

(1)客户端发出创建指令 ReplicaSet(控制器),通过 kube-apiserver 接口

(2)kube-apiserver 服务将创建 pod 模板这条信息发给 etcd 存储

(3)etcd 发送 create 事件至 kube-apiserver

(4)kube-apiserver 发送 create 事件至 kube-controller-manager 管理控制器

(5)kube-controller-manager 会根据需要创建的 pod 清单(副本项/容器的内容),并发送创建 cretae pod 的需求至 kube-controller-manager

(6)kube-controller-manager 会将需要创建的信息保存在 etcd 中

(7)etcd 会将发来的事件(数据清单)发送给 kube-apiserver

(8)kube-apiserver 会将 etcd 发出的事件(创建 pod 的事件)给 kube-scheduler 资源调度器

(9)kube-scheduler 通过调度算法(预选、优选)筛选 node 调度 pod,并将调度完成的信息传给 kube-apiserver

(10)kube-apiserver 会将调度完成的信息保存在 etcd 中 

(11)etcd 会发出更新的 pod 事件至 kube-apiserver

(12)kube-apiserver 会发出更新的 pod 事件至 kubelet

(13)kubelet 会跟容器进行交互创建 pod 及容器,并将 pod 容器的状态通过 kube-apiserver 存储到 etcd 中 

(14)最终 etcd 确认信息结束流程

注意:

① 整个过程中,上方的命令、组件均通过 https 6443 监听 kube-apiserver 接口;

② 在创建 pod 的工作就已经完成了后,kubelet 依然保持监听。如:扩充 Pod 副本数量、镜像文件升级等需求。

三、调度过程介绍

1. 关注的问题

Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。其主要考虑的问题如下:

  • 公平:如何保证每个节点都能被分配资源
  • 资源高效利用:集群所有资源最大化被使用
  • 效率:调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
  • 灵活:允许用户根据自己的需求控制调度的逻辑

Scheduler 作为独立程序运行,持续监听 APIServer,检索 spec.nodeName 为空的 Pod,并为每个 Pod 创建一个绑定 binding(API 对象),指定其应放置在哪个节点上。 

2. 调度策略

2.1 分类

预选策略:首先是过滤掉不满足条件的节点,这个过程称为预算策略(predicate);

优选策略:然后对通过的节点按照优先级排序,这个是优选策略(priorities);

优先级:最后从中选择优先级最高的节点。若中间步骤有误,返回错误。

2.2 Predicate(预选)常见算法

Predicate 是一种策略函数,用于评估节点是否适合放置特定的 Pod。Predicate 函数会检查节点的特性和 Pod 的要求,以确定是否可以将 Pod 放置在该节点上

PodFitsResources

  • 节点上剩余的资源是否大于 pod 请求的资源nodeName,检查节点名称是否和 NodeName 匹配。

PodFitsHost

  • 如果 pod 指定了 NodeName,检查节点名称是否和 NodeName 匹配。

PodFitsHostPorts

  • 节点上已经使用的 port 是否和 pod 申请的 port 冲突。

PodSelectorMatches

  • 过滤掉和 pod 指定的 label 不匹配的节点。 

NoDiskConflict

  • 已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读。

如果在 predicate(预选)过程中没有合适的节点,pod 会一直在 pending(等待 running)状态,不断重试调度,直到有节点满足条件。 经过这个步骤,如果有多个节点满足条件,就继续 priorities(优选)过程:按照优先级大小对节点排序。 

2.3 priorities(优选)常见算法

优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。常见的优先级选项包括:

LeastRequestedPriority

  • 通过计算CPU和Memory的使用率来决定权重,使用率越低权重越高。也就是说,这个优先级指标倾向于资源使用比例更低的节点。

BalancedResourceAllocation

  • 节点上 CPU 和 Memory 使用率越接近,权重越高。这个一般和上面的一起使用,不单独使用。比如 node01 的 CPU 和 Memory 使用率 20:60,node02 的 CPU 和 Memory 使用率 50:50,虽然 node01 的总使用率比 node02 低,但 node02 的 CPU 和 Memory 使用率更接近,从而调度时会优选 node02。

ImageLocalityPriority

  • 倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高。

通过算法对所有的优先级项目和权重进行计算,得出最终的结果。

3. 指定调度节点

3.1 nodeName 调度

pod.spec.nodeName 将 Pod 直接调度到指定的 Node 节点上,会跳过 Scheduler 的调度策略,该匹配规则是强制匹配

示例:

3.2 nodeSelector 调度

pod.spec.nodeSelector:通过 kubernetes 的 label-selector 机制选择节点,由调度器调度策略匹配 label,然后调度 Pod 到目标节点,该匹配规则属于强制约束

示例:

3.3 区别

① nodeName 只能指定单个node节点,nodeSelector 可以指定有相同标签的多个 node 节点

② nodeName 强制调度,不需要经过 scheduler 资源调度器;nodeSelector 经过 scheduler 资源调度器

4. k8s 节点的标签管理

增加标签:
kubectl label [ -n 命名空间 ] 资源类型  资源名称 标签键名=键值
删除标签:
kubectl label [ -n 命名空间 ] 资源类型  资源名称 标签键名-(减号不能忽略)
修改标签:
kubectl label [ -n 命名空间 ] 资源类型  资源名称 标签键名=新的键值 --overwrite
查询标签:
kubectl get [ -n 命名空间 ] 资源类型 --show-label [ -l 标签键名 ]或[ -l 标签键名=键值 ](筛选)

5. node 亲和性

官方文档:将 Pod 指派给节点 | Kubernetes

5.1 概述

节点亲和性允许你指定Pod应当(preferred)或必须(required)调度到具有某些标签的节点上,可以实现Pod调度的精细化控制,确保Pod被安排在具有特定特性的节点上,从而满足应用的部署需求或优化资源利用。

5.1.1 节点亲和性(Node Affinity)

节点亲和性指定了 Pod 可以被调度到哪些节点上。

pod.spec.nodeAffinity
● preferredDuringSchedulingIgnoredDuringExecution:软策略
● requiredDuringSchedulingIgnoredDuringExecution:硬策略
5.1.2 Pod 亲和性(Pod Affinity)

Pod 亲和性指定了 Pod 应该与哪些其他 Pod 一起调度到同一节点上。

pod.spec.affinity.podAffinity/podAntiAffinity
● preferredDuringSchedulingIgnoredDuringExecution:软策略
● requiredDuringSchedulingIgnoredDuringExecution:硬策略

5.2 硬策略和软策略 

5.2.1 硬策略

硬策略,正式名称为 requiredDuringSchedulingIgnoredDuringExecution,表示必须满足的条件。如果无法找到满足条件的节点来调度 Pod,则 Pod 将不会被调度。这意味着硬策略是强制性的。

5.2.2 软策略

软策略,正式名称为 preferredDuringSchedulingIgnoredDuringExecution,表示倾向于满足但不是必须的条件。与硬策略不同,即使没有节点完全符合软策略的所有偏好,Pod仍然会被调度。

软策略通常会附带一个权重值(范围1~100),用来表示偏好的强度。当存在多个节点可以选择时,调度器会根据这些偏好和它们的权重来决定最佳的调度位置。

5.3 键值运算关系

  • In:label 的值在某个列表中  pending   
  • NotIn:label 的值不在某个列表中
  • Gt:label 的值大于某个值
  • Lt:label 的值小于某个值
  • Exists:某个 label 存在
  • DoesNotExist:某个 label 不存在

5.4 示例

示例1:node 硬策略

指定 Kubernetes 调度器在部署这个 Pod 时,要求 Pod 不会被调度到主机名为"node02"的节点上。

① 编辑 yaml 文件

[root@master01 affinity]# vim pod1.yaml
apiVersion: v1               # Kubernetes API版本
kind: Pod                    # 资源类型为Pod
metadata:                    # Pod的元数据信息
  name: affinity             # Pod的名称为
  labels:                    # 为Pod定义了标签
    app: node-affinity-pod   
spec:                        # 定义了Pod的规格,包括容器和亲和性设置    
  containers:                # 定义了Pod中的容器
  - name: with-node-affinity # 容器的名称
    image: soscscs/myapp:v1  # 容器要运行的镜像
  affinity:                  # 定义了Pod的亲和性设置
    nodeAffinity:            # 指定了节点亲和性
      requiredDuringSchedulingIgnoredDuringExecution: # 硬策略
        nodeSelectorTerms:   # 节点选择器的条件
        - matchExpressions:  # 指定了匹配表达式,用于匹配节点的标签
          - key: kubernetes.io/hostname # 指定了要匹配的节点标签的键值
            operator: NotIn  # 表示不在指定的值列表中
            values:
            - node02
# 指定了不在值列表["node02"]中的节点,即Pod不会被调度到主机名为"node02"的节点上

② 启动 pod

[root@master01 affinity]# kubectl apply -f pod1.yaml
pod/affinity created

③ 查看 pod 节点详情信息

[root@master01 affinity]# kubectl get pod -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity   1/1     Running   0          5s    10.244.1.30   node01   <none>           <none>

由于集群中就两个 node 节点(),所有新建的 pod 会被调度到 node01 上。 另外,如果硬策略不满足条件,Pod 状态一直会处于 Pending 状态,比如: operator: In  values: [node03]

示例2:node 软策略 

设置了节点亲和性,优先选择主机名为"node03"的节点来调度这个 Pod。

① 节点增加标签

[root@master01 affinity]# kubectl label nodes node01 fql=a
node/node01 labeled
[root@master01 affinity]# kubectl label nodes node02 fql=b
node/node02 labeled
[root@master01 affinity]# kubectl get nodes --show-labels
NAME       STATUS   ROLES                  AGE   VERSION    LABELS
master01   Ready    control-plane,master   12d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=master01,kubernetes.io/os=linux,node-role.kubernetes.io/control-plane=,node-role.kubernetes.io/master=
node01     Ready    <none>                 11d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,fql=a,kubernetes.io/arch=amd64,kubernetes.io/hostname=node01,kubernetes.io/os=linux
node02     Ready    <none>                 11d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,fql=b,kubernetes.io/arch=amd64,kubernetes.io/hostname=node02,kubernetes.io/os=linux

② 编辑 yaml 文件

[root@master01 affinity]# vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:                 # 定义了Pod的亲和性设置
    nodeAffinity:           # 指定了节点亲和性
      preferredDuringSchedulingIgnoredDuringExecution: # 软策略
      - weight: 1           # 权重为1
        preference:         # 定义了节点亲和性的偏好设置
          matchExpressions: # 定义了匹配表达式,用于指定节点选择的条件
          - key: fql        # 指定了匹配的键
            operator: In    # 节点的主机名必须在指定的值列表中
            values:
            - a
# 指定了匹配的值列表,这里只有一个值"node03",表示偏好选择主机名为"node03"的节点

③ 启动 pod

[root@master01 affinity]# kubectl delete -f pod1.yaml

④ 查看 pod 节点详情信息

[root@master01 affinity]# kubectl get pod -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity   1/1     Running   0          8s    10.244.1.31   node01   <none>           <none>

⑤ 修改 volume 值

 values:
   - c   # 实际上不存在c

⑥ 启动 pod 并查看详情信息

[root@master01 affinity]# kubectl apply -f pod2.yaml
pod/affinity created
[root@master01 affinity]# kubectl get pod -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity   1/1     Running   0          4s    10.244.1.32   node01   <none>           <none>

这里得到的结果并不明显,软策略下无法选择主机名为"node03"的节点来调度这个,会选择其他可用的节点。

示例3:node 软策略权重配置

设置多条软策略不同的权重,查看调用情况。

对应调度标签键值为:fql:a 的权重为10;对应调度标签键值为:fql:b 的权重为20;

① 编辑 yaml 文件

[root@master01 affinity]# vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:
    nodeAffinity:
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 10
        preference:
          matchExpressions:
          - key: fql
            operator: In
            values:
            - a
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 20
        preference:
          matchExpressions:
          - key: fql
            operator: In
            values:
            - b

② 创建 pod

[root@master01 affinity]# kubectl apply -f pod3.yaml
pod/affinity created

③ 查看 pod 详情信息 

[root@master01 affinity]# kubectl get pod -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity   1/1     Running   0          3s    10.244.2.11   node02   <none>           <none>

由此可见,即使标签键值为:fql:b 的调度任务在 yaml 文件下面,只要权重大,则会被调用。

示例4:node 硬策略软策略组合

硬策略对应调度标签键值为:fql:a 的 node;软策略对应调度标签键值为:fql:b 的 node;

① 编辑 yaml 文件

[root@master01 affinity]# vim pod4.yaml
apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: fql
            operator: In
            values:
            - a
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 1
        preference:
          matchExpressions:
          - key: fql
            operator: In
            values:
            - b

② 创建 pod

[root@master01 affinity]# kubectl apply -f pod4.yaml
pod/affinity created
[root@master01 affinity]# kubectl get pod -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity   1/1     Running   0          3s    10.244.1.33   node01   <none>           <none>

 由于优先满足硬策略,可以看见调到到 node01上。

③ 再次创建新的 pod

[root@master01 affinity]# vim pod4.yaml
metadata:
  name: affinity-01

[root@master01 affinity]# kubectl apply -f pod4.yaml
pod/affinity-01 created
[root@master01 affinity]# kubectl get pod -o wide
NAME          READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity      1/1     Running   0          27s   10.244.1.33   node01   <none>           <none>
affinity-01   1/1     Running   0          3s    10.244.1.34   node01   <none>           <none>
[root@master01 affinity]# vim pod1.yaml

由于优先满足硬策略,可以看见并未轮询调度,依然调到到 node01上。 

示例5:node 硬策略软策略组合,硬策略条件不满足

硬策略对应调度标签键值为:fql:c 的 node(实际并不存在);软策略对应调度标签键值为:fql:b 的 node;

① 编辑 yaml 文件

[root@master01 affinity]# kubectl delete -f pod4.yaml
[root@master01 affinity]# kubectl delete -f pod4.yaml

[root@master01 affinity]# vim pod4.yaml
apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: fql
            operator: In
            values:
            - c
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 1
        preference:
          matchExpressions:
          - key: fql
            operator: In
            values:
            - b

② 创建 pod

[root@master01 affinity]# kubectl apply -f pod4.yaml
pod/affinity created

③ 查看 pod 详情信息

[root@master01 affinity]# kubectl get pod -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP       NODE     NOMINATED NODE   READINESS GATES
affinity   0/1     Pending   0          3s    <none>   <none>   <none>           <none>

如果把硬策略和软策略合在一起使用,则要先满足硬策略之后才会满足软策略;这里硬策略不满足,所以处于 Pending 状态。

6. Pod 亲和性与反亲和性

6.1 概述

在 Kubernetes 中,亲和性是一种指导 Pod 如何与节点进行交互的机制。亲和性可以帮助您控制 Pod 的调度行为,包括节点亲和性(Node Affinity)、Pod 亲和性(Pod Affinity)。可以约束一个 Pod 以便限制其只能在特定的节点上运行, 或优先在特定的节点上运行。

节点反亲和性与节点亲和性相反,它用来避免 Pod 被调度到具有特定标签的节点上,这有助于实现高可用性和资源隔离。

6.2 node 亲和性、pod 亲和性与反亲和性对比

调度策略匹配标签操作符拓扑域支持调度目标
nodeAffinity主机In, NotIn, Exists,DoesNotExist, Gt, Lt指定主机
podAffinityPodIn, NotIn, Exists,DoesNotExistPod与指定Pod同一拓扑域
podAntiAffinityPodIn, NotIn, Exists,DoesNotExistPod与指定Pod不在同一拓扑域

6.3 亲和性示例

使用 Pod 亲和性调度,创建多个 Pod 资源。

topologyKey 是节点标签的键。如果两个节点使用此键标记并且具有相同的标签值,则调度器会将这两个节点视为处于同一拓扑域中。 调度器试图在每个拓扑域中放置数量均衡的 Pod。

① 创建一个标签为 app=myapp01 的 Pod

创建一个带有标签的 Pod,观察调度在哪个节点上。

[root@master01 affinity]# vim demo01.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp01
  labels:
    app: myapp01
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1

② 启动 pod myapp01

[root@master01 affinity]# kubectl apply -f demo01.yaml
pod/myapp01 created
[root@master01 affinity]# kubectl get pod -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          3s    10.244.1.35   node01   <none>           <none>

③ 采用硬策略关联标签为 app: myapp01 的 pod

Pod 之间的调度约束,要求在调度 Pod 时,必须满足以下条件:Pod 的标签中包含 app=myapp01。这样的设置可以确保在调度 Pod 时,只有满足特定标签条件的节点才会被考虑。

[root@master01 affinity]# vim demo02.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp02
  labels:
    app: myapp02
spec:
  containers:
  - name: myapp02
    image: soscscs/myapp:v1
  affinity:                 # Pod的亲和性设置,用于指定Pod的调度约束
    podAffinity:            # Pod的亲和性规则
      requiredDuringSchedulingIgnoredDuringExecution: # 硬策略
      - labelSelector:      # 用于选择标签的规则
          matchExpressions: # 这是匹配表达式的列表
          - key: app        # 要匹配的标签键
            operator: In    # 匹配标签键值中的任意一个
            values:         # 匹配的标签值列表
            - myapp01       # 要匹配的标签值
        topologyKey: fql    # 用于指定拓扑域的键,用于确定在哪些节点上进行亲和性约束

④ 启动 pod myapp02

[root@master01 affinity]# kubectl apply -f demo02.yaml
pod/myapp02 created
[root@master01 affinity]# kubectl get pod -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          35m   10.244.1.35   node01   <none>           <none>
myapp02   1/1     Running   0          3s    10.244.1.36   node01   <none>           <none>

⑤ 再次创建新的 pod myapp03

[root@master01 affinity]# vim demo02.yaml
metadata:
  name: myapp03

[root@master01 affinity]# kubectl apply -f demo02.yaml
pod/myapp03 created
[root@master01 affinity]# kubectl get pod -o wide
NAME      READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          38m     10.244.1.35   node01   <none>           <none>
myapp02   1/1     Running   0          3m10s   10.244.1.36   node01   <none>           <none>
myapp03   1/1     Running   0          2s      10.244.1.37   node01   <none>           <none>

⑥ 修改 node02 标签,使得与 node01 在同一拓扑域

[root@master01 affinity]# kubectl label nodes node02 --overwrite fql=a
node/node02 labeled
[root@master01 affinity]# kubectl get node --show-labels 
NAME       STATUS   ROLES                  AGE   VERSION    LABELS
master01   Ready    control-plane,master   12d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=master01,kubernetes.io/os=linux,node-role.kubernetes.io/control-plane=,node-role.kubernetes.io/master=
node01     Ready    <none>                 12d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,fql=a,kubernetes.io/arch=amd64,kubernetes.io/hostname=node01,kubernetes.io/os=linux
node02     Ready    <none>                 12d   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,fql=a,kubernetes.io/arch=amd64,kubernetes.io/hostname=node02,kubernetes.io/os=linux

⑦ 再次创建新的 pod myapp04,观察调度情况

[root@master01 affinity]# kubectl apply -f demo02.yaml
pod/myapp04 created
[root@master01 affinity]# kubectl get pod -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          49m   10.244.1.35   node01   <none>           <none>
myapp02   1/1     Running   0          13m   10.244.1.36   node01   <none>           <none>
myapp03   1/1     Running   0          10m   10.244.1.37   node01   <none>           <none>
myapp04   1/1     Running   0          6s    10.244.2.12   node02   <none>           <none>

在同一拓扑域,按照轮询的机制,此时新的 pod 将调度到 node02。 

6.4 反亲和性示例

Pod 反亲和性(Pod Anti-Affinity)是用来确保 Kubernetes 中的 Pod 不会与某些特定标签的 Pod 调度到同一节点上的规则。

示例1:软策略

① 创建 yaml 

[root@master01 affinity]# vim demo03.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp10
  labels:
    app: myapp10
spec:
  containers:
  - name: myapp10
    image: soscscs/myapp:v1
  affinity:                   # 定义了Pod之间的亲和性设置
    podAntiAffinity:          # Pod之间的反亲和性规则
      preferredDuringSchedulingIgnoredDuringExecution: # 软策略
      - weight: 100           # 优先级权重为100
        podAffinityTerm:      # 指定了关于Pod亲和性的条件
          labelSelector:      # 标签选择器,用于选择具有特定标签的Pod
            matchExpressions: # 匹配表达式列表
            - key: app        # 要匹配的标签键为app
              operator: In    # 标签的值必须在指定的值列表中
              values:      
              - myapp01       # 标签的值必须为myapp01
          topologyKey: fql    # 指定拓扑域的键

② 创建 pod

[root@master01 affinity]# kubectl label nodes node02 --overwrite fql=b

[root@master01 affinity]# kubectl apply -f demo03.yaml 
[root@master01 affinity]# kubectl get pod -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          51s   10.244.1.41   node01   <none>           <none>
myapp02   1/1     Running   0          24s   10.244.1.42   node01   <none>           <none>
myapp10   1/1     Running   0          4s    10.244.2.13   node02   <none>           <none>

如果节点处于 Pod 所在的同一拓扑域且具有键“app”和值“myapp01”的标签, 则该 pod 不应将其调度到该节点上。 (如果 topologyKey 为 fql,则意味着当节点和具有键 “app”和值“myapp01”的 Pod 处于相同的拓扑域,Pod 不能被调度到该节点上。)

示例2:硬策略

① 创建 yaml 

[root@master01 affinity]# vim demo4.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp20
  labels:
    app: myapp20
spec:
  containers:
  - name: myapp20
    image: soscscs/myapp:v1
  affinity:
    podAntiAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: app
            operator: In
            values:
            - myapp01
        topologyKey: fql

② 创建 pod

[root@master01 affinity]# kubectl label nodes node02 --overwrite fql=a

[root@master01 affinity]# kubectl apply -f demo4.yaml 
pod/myapp20 created
[root@master01 affinity]# kubectl get pod -o wide
NAME      READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          9m2s    10.244.1.41   node01   <none>           <none>
myapp02   1/1     Running   0          8m35s   10.244.1.42   node01   <none>           <none>
myapp10   1/1     Running   0          8m15s   10.244.2.13   node02   <none>           <none>
myapp20   0/1     Pending   0          5s      <none>        <none>   <none>           <none>

由于指定 Pod 所在的 node01 节点上具有带有键 fql 和标签值 a 的标签,node02 也有这个 kgc=a的标签,所以 node01 和 node02 是在一个拓扑域中,反亲和要求新 Pod 与指定 Pod 不在同一拓扑域,所以新 Pod 没有可用的 node 节点,即为 Pending 状态。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/654403.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

BookxNote Pro 宝藏 PDF 笔记软件

一、简介 1、BookxNote Pro 是一款专为电子书阅读和学习笔记设计的软件&#xff0c;支持多种电子书格式&#xff0c;如PDF和EPUB&#xff0c;能够帮助用户高效地管理和阅读电子书籍&#xff0c;同时具备强大的笔记功能&#xff0c;允许用户对书籍内容进行标注、摘录和思维导图绘…

Shell编程中的循环语句和函数

一、for循环语句 当面对各种列表重复任务时&#xff0c;使用简单的if语句已经难以满足需求&#xff0c;这时就需要for循环语句。for语句的结构为&#xff1a; for 变量 in 取值列表 do 命令序列 done 使用for循环语句时&#xff0c;需要指定一个变量及取值列表&#xff0c;针对…

【经验分享】可视化的项目管理,轻松解决资源冲突和协作困难

在数字化时代&#xff0c;高效协同逐步成为提升组织效能的重要着力点&#xff0c;同时也是企业保持竞争力、实现持续发展的关键要素。一方面可以打破部门壁垒&#xff0c;促进信息流通&#xff0c;从而提升整体工作效率&#xff1b;另一方面还能帮助企业优化资源配置和管理流程…

快团团帮卖团长怎么对供货大团长进行评分?

都说帮卖“躺赚”&#xff1f; 一旦遇团不淑&#xff0c;惨遭不靠谱团长挖坑&#xff0c;售后拖延、发货慢、产品瑕疵…… 加上顾客夺命连环催&#xff0c;双面夹击&#xff0c;夹缝生存。供货团长靠不靠谱太重要了&#xff01; 快团团供货团长评分系统上线&#xff01; 帮卖团…

什么是erp仓储管理系统?ERP系统的价值体现在哪些方面?

ERP仓储管理系统是一个帮助企业管理仓库的工具。想象一下&#xff0c;如果你是一个仓库管理员&#xff0c;里面堆满了各种各样的产品和货物&#xff0c;如何确保这些产品数量准确、摆放有序&#xff0c;以及快速找到自己需要的产品呢&#xff1f; 这时&#xff0c;如果企业引用…

GitLab项目中添加用户,并设置其角色权限等

注意&#xff1a;创建用户(new user)&#xff0c;创建完用户然后再项目邀请用户&#xff0c;选择创建过的用户 一、以管理员身份登录GitLab的WebUI并创建用户 1>.使用管理员登录GitLab 使用管理员(root)用户登录成功后&#xff0c;点击如下图所示的小扳手&#xff0c;点击…

NameSilo + Cloudflare 给网站加个域名(附 NameSilo 购买域名优惠码)

网站做好了之后,下一步就是买域名 在国内买域名的话,还需要备案,个人名下备案好像是还有限制,我就去 NameSilo 上面买的 在买之前,对比过几家 比如: godaddy/namecheap/cloudflare 本来是倾向于在 godaddy 上面买的,因为它支持支付宝支付,但是在详细看的时候,发现如果购买一年…

CLIP 源码分析:simple_tokenizer.py

tokenizer的含义 from .clip import *引入头文件时为什么有个. 正文 import gzip import html import os from functools import lru_cacheimport ftfy import regex as re# 上面的都是头文件# 这段代码定义了一个函数 default_bpe()&#xff0c;它使用了装饰器 lru_cache()。…

vue 笔记02

目录 01 事件修饰符 02 按键修饰符 03 v-bind属性 04 vue-axios的基本使用 05 vue的生命周期 06 vue生命周期涉及到的其他的知识点 01 事件修饰符 vue的事件修饰符 事件名称.修饰符1.修饰符2...事件驱动函数 stop 阻止冒泡修饰符 prevent 阻止默认行为 once 当前事件只触…

嵌入式学习记录5.18(多点通信)

一、套接字属性设置相关函数 #include <sys/types.h> /* See NOTES */#include <sys/socket.h>int getsockopt(int sockfd, int level, int optname,void *optval, socklen_t *optlen);int setsockopt(int sockfd, int level, int optname,const void *op…

vue3学习(三)

前言 继续接上一篇笔记&#xff0c;继续学习的vue的组件化知识&#xff0c;可能需要分2个小节记录。前端大佬请忽略&#xff0c;也可以留下大家的鼓励&#xff0c;感恩&#xff01; 一、理解组件化 二、组件化知识 1、先上知识点&#xff1a; 2、示例代码 App.vue (主页面) …

人类和小鼠转录组上游分析

基础软件 conda install cutadapt, trimmomatic, samtools, hisat2, subread, deeptools -y人类转录组上游分析 # 样本名称 sample_namesample# 线程 threads4# 双端测序原始fastq1和fastq2路径 fastq1_path/path/${sample_name}_1.fq.gz fastq2_path/path/${sample_name}_2.…

SRS视频服务器应用研究

1.SRS尝试从源码编译启动 1.1.安装ubuntu 下载镜像文件 使用VMWare安装&#xff0c;过程中出现蓝屏&#xff0c;后将VM的软件版本从15.5升级到17&#xff0c;就正常了。

WPS PPT学习笔记 2 结构页的制作

制作PPT结构页 制作封面页、目录页、封底页。它们都属于结构页。而时间轴页&#xff0c;流程图页&#xff0c;框架图页这些属于内容页。 做一份PPT 讲一个故事 封面页 开头&#xff0c; 目录页 脉络&#xff0c; 各式内容页 详情&#xff0c; 封底页 结尾。 所有的结构页…

Linux系统编程学习笔记

1 前言 1.1 环境 平台&#xff1a;uabntu20.04 工具&#xff1a;vim,gcc,make 1.2 GCC Linux系统下的GCC&#xff08;GNU Compiler Collection&#xff09;是GNU推出的功能强大、性能优越的多平台编译器&#xff0c;是GNU的代表作品之一。gcc是可以在多种硬体平台上编译出可执…

【自用题库】2024/华三/H3CNE安全GB0-510

【网工必备】华三H3CNE-安全-510 题库覆盖百分百&#xff0c;题库有291道总结汇总 还有vce加vce文件模拟真实考试环境 到手文件夹5样东西&#xff01;&#xff01;&#xff01; 认证简介&#xff1a;H3CNE-Security&#xff08;H3C Certified Network Engineer For Security&am…

Dubbo生态之深度分析sentinel的流量控制

1. 深度了解sentinel限流规则参数的含义 博客Dubbo生态之sentinel限流-CSDN博客中有dubbo集成sentinel的demo演示 在sentinel中&#xff0c;限流的直接表现形式就是&#xff0c;在执行Entry nodeA SphU.entry(resourceName)的时候抛出FlowException异常&#xff0c;FlowExce…

Octo:伯克利开源机器人开发框架

【摘要】在各种机器人数据集上预先训练的大型策略有可能改变机器人学习&#xff1a;这种通用机器人策略无需从头开始训练新策略&#xff0c;只需使用少量领域内数据即可进行微调&#xff0c;但具有广泛的泛化能力。然而&#xff0c;为了广泛应用于各种机器人学习场景、环境和任…

OpenCV学习 基础图像操作(十四):直方图均衡化和直方图规定化

基础原理 直方图操作是基于像素统计的基础图像操作,被广泛运用于调整图像的对比度,并由此衍生出很多变种和该经的方式. 图像相直方图 直方图(Histogram)&#xff0c;又称质量分布图&#xff0c;是一种统计报告图&#xff0c;由一系列高度不等的纵向条纹或线段表示数据分布的…

在马达驱动上的MOS产品选型分析与应用

电机的应用非常广泛&#xff0c;可以说大部分动的产品内部都有电机的身影&#xff0c;其主要的应用领域有风机、泵、散热风扇、电动工具、智能家居、以及汽车应用等等。随着各国出台了更加严格的用电标准&#xff0c;节能电机成为了市场关注的热点&#xff0c;而BLDC电机具有高…