【机器学习】探究DQN通过训练来解决AI序列决策问题

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱
ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客
本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶
个人主页:xiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客

系列专栏:机器学习系列专栏

"探索未来,掌握人工智能"🚀 点击加入我们的AI学习之旅,让技术变得有趣又易懂,点击跳转
我的目标:"团团等我💪( ◡̀_◡́ ҂)" 

( ⸝⸝⸝›ᴥ‹⸝⸝⸝ )欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​+关注(互三必回)! 

 

目录

 一.AI序列决策问题

1.序列决策问题的特点:

2.解决序列决策问题的AI方法:

3.序列决策问题的应用场景:

二深度Q网络(Deep Q-Networks, DQN)解决序列决策问题

1.什么是DQN 

2.DNN如何训练

三.Python实现DQN算法训练过程


 一.AI序列决策问题

AI序列决策问题是指在人工智能领域中,智能体需要在一个序列的环境中做出一系列决策,以达到某个目标或最大化某种累积奖励的问题。这类问题通常涉及到强化学习,其中智能体通过与环境的交互来学习最优的行为策略。

1.序列决策问题的特点:

  1. 时间维度:决策不是一次性的,而是需要在一系列时间步骤中进行。每个决策都会影响后续的状态和可能的决策。

  2. 状态变化:智能体的每个决策都会使环境从一个状态转移到另一个状态。状态可以是环境的描述,如游戏的当前分数、机器人的位置等。

  3. 奖励反馈:智能体在每个时间步骤做出决策后,环境会提供一个奖励(或惩罚),这是对智能体决策好坏的反馈。

  4. 长期目标:智能体的目标通常是长期的,比如最大化累积奖励、达到最终的胜利状态或完成任务。

  5. 不确定性:智能体在做出决策时可能无法完全了解环境的全部特性,因此需要在不确定性中做出最优的选择。

2.解决序列决策问题的AI方法:

  1. 强化学习:通过智能体与环境的交互来学习最优策略。智能体通过尝试不同的行动并接收环境的奖励或惩罚来学习。

  2. 动态规划:一种基于模型的优化方法,通过预测未来的状态和奖励来计算当前行动的价值。

  3. 蒙特卡洛方法:通过随机模拟来估计行动的价值,适用于难以精确建模的环境。

  4. 时序差分学习:结合了动态规划和蒙特卡洛方法的特点,通过学习状态和行动之间的差异来更新价值估计。

  5. 深度学习:使用深度神经网络来近似复杂的价值函数或策略函数,尤其在状态空间高维且连续时表现出色。

3.序列决策问题的应用场景:

  • 游戏AI:如棋类游戏、电子游戏等,智能体需要通过一系列行动来赢得比赛。
  • 机器人控制:机器人需要根据环境的变化做出连续的移动和操作决策。
  • 自动驾驶汽车:汽车需要根据路况和交通规则做出连续的驾驶决策。
  • 资源管理:如电网管理、网络带宽分配等,需要根据实时数据做出一系列调度决策。

AI序列决策问题是人工智能中一个非常重要且活跃的研究领域,它不仅挑战着智能体在复杂环境中的学习能力,也推动了AI技术在多个领域的应用和发展。

二深度Q网络(Deep Q-Networks, DQN)解决序列决策问题

1.什么是DQN 

DQN属于DRL(深度强化学习)的一种,它是深度学习与Q学习的结合体。使用 Q-learning 因为采用S-A表格的局限性,当状态和行为的组合不可穷尽时,就无法通过查表的方式选取最优的Action了。这时候就该想到深度学习了,想通过深度学习找到最优解在很多情况下确实不太靠谱,但是找到一个无限逼近最优解的次优解,倒是没有问题的。因此DQN实际上,总体思路还是用的Q学习的思路,不过对于给定状态选取哪个动作所能得到的Q值,却是由一个深度神经网络来计算的了,其流程图如下:

  

2.DNN如何训练

现在我们的选择哪个动作,是由DNN来做决定的,因此我们需要训练DNN以使其能达到令人满意的表现。这显然是一个监督学习的问题,那么训练集是什么,标签是什么,损失函数又是什么?
首先,我们DNN的输出值,自然是在给定状态的情况下,执行各action后能得到的Q值。然而事实上我们在很多情况下并不知道最优的Q值是什么,比如自动驾驶、围棋等情况,所以似乎我们没法给出标签。但是什么是不变的呢?Reward
对状态s,执行动作a,那么得到的reward是一定的,而且是不变的!因此需要考虑从reward下手,让预测Q值和真实Q值的比较问题转换成让模型实质上在拟合reward的问题。
如果不能很好的理解,请看下面公式,下面公式中target是什么我们会在后面说到,这里先忽略它,那个红色的 θi- 我们也暂且将它当成 θi来看这个公式描述的就是模型的损失函数,大括号外面就是求一个均方差,我们主要看括号里面。前面被target标出来的地方是这一步得到的reward+下一状态所能得到的最大Q值,它们减去这一步的Q值,那么实际上它们的差就是实际reward减去现有模型认为在s下采取a时能得到的reward值。

现在的问题就已经转换为需要一组训练集,它能够提供一批四元组(s, a, r, s’),其中s’s执行a后的下一个状态。如果能有这样一个四元组,就能够用来训练DNN了,这就是我们要介绍的Experience reply
Experience Reply
前面提到我们需要一批四元组(s, a, r, s’)来进行训练,因此我们需要缓存一批这样的四元组到经验池中以供训练之用。由于每次执行一个动作后都能转移到下一个状态,并获得一个reward,因此我们每执行一次动作后都可以获得一个这样的四元组,也可以将这个四元组直接放入经验池中。
我们知道这种四元组之间是存在关联性的,因为状态的转移是连续的,如果直接按顺序取一批四元组作为训练集,那么是容易过拟合的,因为训练样本间不是独立的!为解决这个问题,我们可以简单地从经验池中随机抽取少量四元组作为一个batch,这样既保证了训练样本是独立同分布的,也使得每个batch样本量不大,能加快训练速度。 训练的伪代码为:

Target Network
上面的代码似乎已经能够正常运行了,为什么又冒出一个target network呢?回想下前面那个公式,这里重新搬到下面来,是不是之前说targetθi-都先忽略,现在就解释一下为什么

 

这个公式里θi-θi肯定是有区别的,不然也不会使用两个符号了。事实上,我们需要设计两个DNN,它们结构完全一样,但是参数不一样,即神经网络中各层的权重、偏置等,一个的参数是θi-,而另一个是θi。我们每次迭代中,更新的是θi而不更新θi-,且规定每运行C步后让θi- = θi。而其θi-所在的网络就被称为target network
为什么要弄这么奇怪的东西?
这也是为了防止过拟合。试想如果只有一个神经网络,那么它就在会不停地更新,那么它所追求的目标是在一直改变的,即在
θ改变的时候,不止Q(s, a)变了,max Q(s’, a’)也变了。这样的好处是使得上面公式中target所标注的部分是暂时固定的,我们不断更新θ追逐的是一个固定的目标,而不是一直改变的目标。
如果做了这种考虑,那么伪代码就要做一点点修改了,修改后如下,大家可以对比着看: 

三.Python实现DQN算法训练过程

在DQN中,Q值表中表示的是当前已学习到的经验。而根据公式计算出的 Q 值是agent通过与环境交互及自身的经验总结得到的一个分数(即:目标 Q 值)。最后使用目标 Q 值(target_q)去更新原来旧的 Q 值(q)。而目标 Q 值与旧的 Q 值的对应关系,正好是监督学习神经网络中结果值与输出值的对应关系。

所以,loss = (target_q - q)^2

即:整个训练过程其实就是 Q 值(q)向目标 Q 值(target_q)逼近的过程。

用TensorFlow实现的Deep Q-Network(DQN)的例子

import tensorflow as tf
import numpy as np
from collections import deque
import random


class DeepQNetwork:
    r = np.array([[-1, -1, -1, -1, 0, -1],
                  [-1, -1, -1, 0, -1, 100.0],
                  [-1, -1, -1, 0, -1, -1],
                  [-1, 0, 0, -1, 0, -1],
                  [0, -1, -1, 1, -1, 100],
                  [-1, 0, -1, -1, 0, 100],
                  ])

    # 执行步数。
    step_index = 0

    # 状态数。
    state_num = 6

    # 动作数。
    action_num = 6

    # 训练之前观察多少步。
    OBSERVE = 1000.

    # 选取的小批量训练样本数。
    BATCH = 20

    # epsilon 的最小值,当 epsilon 小于该值时,将不在随机选择行为。
    FINAL_EPSILON = 0.0001

    # epsilon 的初始值,epsilon 逐渐减小。
    INITIAL_EPSILON = 0.1

    # epsilon 衰减的总步数。
    EXPLORE = 3000000.

    # 探索模式计数。
    epsilon = 0

    # 训练步数统计。
    learn_step_counter = 0

    # 学习率。
    learning_rate = 0.001

    # γ经验折损率。
    gamma = 0.9

    # 记忆上限。
    memory_size = 5000

    # 当前记忆数。
    memory_counter = 0

    # 保存观察到的执行过的行动的存储器,即:曾经经历过的记忆。
    replay_memory_store = deque()

    # 生成一个状态矩阵(6 X 6),每一行代表一个状态。
    state_list = None

    # 生成一个动作矩阵。
    action_list = None

    # q_eval 网络。
    q_eval_input = None
    action_input = None
    q_target = None
    q_eval = None
    predict = None
    loss = None
    train_op = None
    cost_his = None
    reward_action = None

    # tensorflow 会话。
    session = None

    def __init__(self, learning_rate=0.001, gamma=0.9, memory_size=5000):
        self.learning_rate = learning_rate
        self.gamma = gamma
        self.memory_size = memory_size

        # 初始化成一个 6 X 6 的状态矩阵。
        self.state_list = np.identity(self.state_num)

        # 初始化成一个 6 X 6 的动作矩阵。
        self.action_list = np.identity(self.action_num)

        # 创建神经网络。
        self.create_network()

        # 初始化 tensorflow 会话。
        self.session = tf.InteractiveSession()

        # 初始化 tensorflow 参数。
        self.session.run(tf.initialize_all_variables())

        # 记录所有 loss 变化。
        self.cost_his = []

    def create_network(self):
        """
        创建神经网络。
        :return:
        """
        self.q_eval_input = tf.placeholder(shape=[None, self.state_num], dtype=tf.float32)
        self.action_input = tf.placeholder(shape=[None, self.action_num], dtype=tf.float32)
        self.q_target = tf.placeholder(shape=[None], dtype=tf.float32)

        neuro_layer_1 = 3
        w1 = tf.Variable(tf.random_normal([self.state_num, neuro_layer_1]))
        b1 = tf.Variable(tf.zeros([1, neuro_layer_1]) + 0.1)
        l1 = tf.nn.relu(tf.matmul(self.q_eval_input, w1) + b1)

        w2 = tf.Variable(tf.random_normal([neuro_layer_1, self.action_num]))
        b2 = tf.Variable(tf.zeros([1, self.action_num]) + 0.1)
        self.q_eval = tf.matmul(l1, w2) + b2

        # 取出当前动作的得分。
        self.reward_action = tf.reduce_sum(tf.multiply(self.q_eval, self.action_input), reduction_indices=1)
        self.loss = tf.reduce_mean(tf.square((self.q_target - self.reward_action)))
        self.train_op = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.loss)

        self.predict = tf.argmax(self.q_eval, 1)

    def select_action(self, state_index):
        """
        根据策略选择动作。
        :param state_index: 当前状态。
        :return:
        """
        current_state = self.state_list[state_index:state_index + 1]

        if np.random.uniform() < self.epsilon:
            current_action_index = np.random.randint(0, self.action_num)
        else:
            actions_value = self.session.run(self.q_eval, feed_dict={self.q_eval_input: current_state})
            action = np.argmax(actions_value)
            current_action_index = action

        # 开始训练后,在 epsilon 小于一定的值之前,将逐步减小 epsilon。
        if self.step_index > self.OBSERVE and self.epsilon > self.FINAL_EPSILON:
            self.epsilon -= (self.INITIAL_EPSILON - self.FINAL_EPSILON) / self.EXPLORE

        return current_action_index

    def save_store(self, current_state_index, current_action_index, current_reward, next_state_index, done):
        """
        保存记忆。
        :param current_state_index: 当前状态 index。
        :param current_action_index: 动作 index。
        :param current_reward: 奖励。
        :param next_state_index: 下一个状态 index。
        :param done: 是否结束。
        :return:
        """
        current_state = self.state_list[current_state_index:current_state_index + 1]
        current_action = self.action_list[current_action_index:current_action_index + 1]
        next_state = self.state_list[next_state_index:next_state_index + 1]
        # 记忆动作(当前状态, 当前执行的动作, 当前动作的得分,下一个状态)。
        self.replay_memory_store.append((
            current_state,
            current_action,
            current_reward,
            next_state,
            done))

        # 如果超过记忆的容量,则将最久远的记忆移除。
        if len(self.replay_memory_store) > self.memory_size:
            self.replay_memory_store.popleft()

        self.memory_counter += 1

    def step(self, state, action):
        """
        执行动作。
        :param state: 当前状态。
        :param action: 执行的动作。
        :return:
        """
        reward = self.r[state][action]

        next_state = action

        done = False

        if action == 5:
            done = True

        return next_state, reward, done

    def experience_replay(self):
        """
        记忆回放。
        :return:
        """
        # 随机选择一小批记忆样本。
        batch = self.BATCH if self.memory_counter > self.BATCH else self.memory_counter
        minibatch = random.sample(self.replay_memory_store, batch)

        batch_state = None
        batch_action = None
        batch_reward = None
        batch_next_state = None
        batch_done = None

        for index in range(len(minibatch)):
            if batch_state is None:
                batch_state = minibatch[index][0]
            elif batch_state is not None:
                batch_state = np.vstack((batch_state, minibatch[index][0]))

            if batch_action is None:
                batch_action = minibatch[index][1]
            elif batch_action is not None:
                batch_action = np.vstack((batch_action, minibatch[index][1]))

            if batch_reward is None:
                batch_reward = minibatch[index][2]
            elif batch_reward is not None:
                batch_reward = np.vstack((batch_reward, minibatch[index][2]))

            if batch_next_state is None:
                batch_next_state = minibatch[index][3]
            elif batch_next_state is not None:
                batch_next_state = np.vstack((batch_next_state, minibatch[index][3]))

            if batch_done is None:
                batch_done = minibatch[index][4]
            elif batch_done is not None:
                batch_done = np.vstack((batch_done, minibatch[index][4]))

        # q_next:下一个状态的 Q 值。
        q_next = self.session.run([self.q_eval], feed_dict={self.q_eval_input: batch_next_state})

        q_target = []
        for i in range(len(minibatch)):
            # 当前即时得分。
            current_reward = batch_reward[i][0]

            # # 游戏是否结束。
            # current_done = batch_done[i][0]

            # 更新 Q 值。
            q_value = current_reward + self.gamma * np.max(q_next[0][i])

            # 当得分小于 0 时,表示走了不可走的位置。
            if current_reward < 0:
                q_target.append(current_reward)
            else:
                q_target.append(q_value)

        _, cost, reward = self.session.run([self.train_op, self.loss, self.reward_action],
                                           feed_dict={self.q_eval_input: batch_state,
                                                      self.action_input: batch_action,
                                                      self.q_target: q_target})

        self.cost_his.append(cost)

        # if self.step_index % 1000 == 0:
        #     print("loss:", cost)

        self.learn_step_counter += 1

    def train(self):
        """
        训练。
        :return:
        """
        # 初始化当前状态。
        current_state = np.random.randint(0, self.action_num - 1)
        self.epsilon = self.INITIAL_EPSILON

        while True:
            # 选择动作。
            action = self.select_action(current_state)

            # 执行动作,得到:下一个状态,执行动作的得分,是否结束。
            next_state, reward, done = self.step(current_state, action)

            # 保存记忆。
            self.save_store(current_state, action, reward, next_state, done)

            # 先观察一段时间累积足够的记忆在进行训练。
            if self.step_index > self.OBSERVE:
                self.experience_replay()

            if self.step_index > 10000:
                break

            if done:
                current_state = np.random.randint(0, self.action_num - 1)
            else:
                current_state = next_state

            self.step_index += 1

    def pay(self):
        """
        运行并测试。
        :return:
        """
        self.train()

        # 显示 R 矩阵。
        print(self.r)

        for index in range(5):

            start_room = index

            print("#############################", "Agent 在", start_room, "开始行动", "#############################")

            current_state = start_room

            step = 0

            target_state = 5

            while current_state != target_state:
                out_result = self.session.run(self.q_eval, feed_dict={
                    self.q_eval_input: self.state_list[current_state:current_state + 1]})

                next_state = np.argmax(out_result[0])

                print("Agent 由", current_state, "号房间移动到了", next_state, "号房间")

                current_state = next_state

                step += 1

            print("Agent 在", start_room, "号房间开始移动了", step, "步到达了目标房间 5")

            print("#############################", "Agent 在", 5, "结束行动", "#############################")


if __name__ == "__main__":
    q_network = DeepQNetwork()
    q_network.pay()

这个DQN实现是一个简化的版本,简单介绍一下。在实际应用中,可能需要对网络结构、训练过程和超参数进行调整和优化。此外,代码中的 r 矩阵定义了状态转移和奖励,这是一个特定于问题的矩阵,需要根据具体问题进行设计

以上就算关于DQN的简单介绍.感谢你的阅读.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/652918.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

白酒:不同产地白酒的风格特点与比较

云仓酒庄豪迈白酒&#xff0c;作为中国白酒的一部分&#xff0c;其风格特点深受产区的影响。不同产地的白酒&#xff0c;由于自然环境、酿造工艺等因素的差异&#xff0c;形成了各自与众不同的风味和特点。下面让云仓酒庄豪迈白酒来比较一下不同产地白酒的风格特点。 首先&…

iPhone“已删除”照片被恢复,苹果到底有没有后门?

继微软本周推出的Windows“回忆”功能引发隐私焦虑&#xff0c;遭马斯克和安全大咖们猛烈抨击后&#xff0c;苹果iPhone手机近日也曝出了类似的“记忆门”。 删除十几年的iPhone照片被恢复 近日&#xff0c;有苹果手机用户更新了苹果上周发布的iOS 17.5系统后&#xff0c;意外…

大数据开发面试题【ClickHouse篇】

170、clickhouse介绍以及架构 clickhouse一个分布式列式存储数据库&#xff0c;主要用于在线分析查询 171、列式存储和行式存储有什么区别&#xff1f; 行式存储&#xff1a; 1、数据是按行存储的 2、没有建立索引的查询消耗很大的IO 3、建立索引和视图花费一定的物理空间和…

摩尔投票法——代码实现及注释(力扣169题:找出列表中多数元素)

题源&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 目录 一、摩尔投票法 1.1 关键思想 1.2 时空复杂度 1.3 算法详细步骤 1.4 代码 1.5 算法理解 一、摩尔投票法 摩尔投票法&#xff08;Boyer–Moore Majority Vote Algorithm&#xff09;&#xff0c;也被称为…

【MySQL】SQL 基础

文章目录 【 1. SQL 的书写规则 】1.1 大小写规则1.2 常量的表示1.3 注释1.4 HELP 系统帮助 【 2. 常用数据库函数 】2.1 SHOW DATABASES 显示数据库2.2 CREATE DATABASE 创建数据库2.3 ALTER DATABASE 修改数据库2.4 DROP DATABASE 删除数据库2.5 USE 选择数据库 【 3. RDBMS …

Python基于PyQt6制作GUI界面——多选框

QCheckBox 是 PyQt6 中的一个复选框控件&#xff0c;它允许用户通过单击来选择或取消选择某个选项。与 QRadioButton 不同&#xff0c;QCheckBox 控件并不互斥&#xff0c;这意味着用户可以同时选择多个 QCheckBox。示例对应的制作的 ui文件 界面如下所示。 <?xml version…

惯性测量单元M-G370系列广泛用于工业系统各个领域

爱普生现已推出型号为M-G370系列的高稳定性、高精度及极小尺寸封装的惯性测量单元(IMU)&#xff0c;可广泛应用于工业系统的各个领域。 为了节省PCB的面积和产品空间&#xff0c;M-G370系列性测量单元设计精巧&#xff0c;且具有6个自由度:三轴角速率和三轴线性加速度&…

5个将文本转语音的工具,高考复习的绝佳助手

高考倒计时10天&#xff01; 在这最后的冲刺阶段&#xff0c;同学们都在拼命刷题&#xff0c;但面对已经整理好的知识点&#xff0c;时间紧迫&#xff0c;如何高效复习呢&#xff1f; 别急&#xff0c;今天我要和大家分享一个绝佳的复习方法——文字转语音。这个方法可以让你…

JVM 内存布局深度解析,你所不知道的一面

作为Java开发者&#xff0c;想要写出高质量的代码&#xff0c;理解JVM的内存结构是必修课。本文将为您深度解析 Java 虚拟机(JVM)中的内存布局及其细节分析&#xff0c;让你在内存管理的道路上行稳致远。希望通过本文能让你彻底理解其中的奥秘。 一、内存布局概览 在我们深入具…

【C++】牛客——BC157 素数回文

✨题目链接&#xff1a; BC157 素数回文 ✨题目描述 现在给出一个素数&#xff0c;这个素数满足两点&#xff1a; 只由1-9组成&#xff0c;并且每个数只出现一次&#xff0c;如13,23,1289。 位数从高到低为递减或递增&#xff0c;如2459&#xff0c;87631。 请你判断一下&…

java医院管理系统源码(springboot+vue+mysql)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的医院管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 医院管理系统的主要使用者分…

平衡二叉树的构建(理论,部分函数代码)

平衡二叉树是二叉排序树的一种特殊情况&#xff0c;平衡二叉树的出现是为了在最坏情况下的时间复杂度仍然是对数级别O(logn)&#xff0c;从而保证了高效的搜索、插入和删除操作。 举个例子&#xff0c;如果有一个数组是&#xff1a;1&#xff0c;2&#xff0c;3。如果只简单的…

GoldenEye-v1(vulnhub)靶机练习实践报告

GoldenEye-v1****靶机练习实践报告 一、安装靶机 靶机是.ova文件&#xff0c;需要用VirtualBox打开&#xff0c;但我习惯于使用VMWare,因此修改靶机文件&#xff0c;使其适用于VMWare打开。 解压ova文件&#xff0c;得到.ovf文件和.vmdk文件。 用记事本打开.ovf文件并修改“…

汽车制造业安全有效的设计图纸文件外发系统是什么样的?

在汽车制造的世界里&#xff0c;那些设计图不仅仅是公司智慧的闪光点&#xff0c;更是它们竞争的秘密武器。但问题来了&#xff0c;当公司需要和供应商、合作伙伴频繁交换数据时&#xff0c;怎样安全又高效地发送这些设计图&#xff0c;就成了一个头疼的问题。这篇文章会深挖一…

基于Vue uni-app的自定义列表表格信息展示组件

摘要&#xff1a;随着软件技术的不断发展&#xff0c;前端开发面临着越来越多的挑战。特别是在业务场景复杂多变的情况下&#xff0c;如何提高开发效率和降低维护成本成为了关键。本文旨在探讨组件化开发在前端应用中的重要性&#xff0c;并以Vue uni-app自定义列表表格为例&am…

使用虚拟卡注册亚马逊店铺亲测墨西哥、北美都可以亲测~~

这几天测试了使用虚拟信用卡注册墨西哥与北美站的店铺&#xff0c;成功下店&#xff0c;总有人说会被扫&#xff0c;其实去年12月费就有使用卡注册店铺&#xff0c;至今还是好的 当然也不是完全都没有可能店铺不会挂&#xff0c;挂的时候提供账单就好了&#xff0c;直接找客服…

go使用letteravatar生成圆形透明头像图标

官网地址&#xff1a;GitHub - disintegration/letteravatar: Letter avatar generation for Go 我对其中函数改了一下&#xff0c;支持多个字符&#xff0c;效果如下&#xff1a; func TestCreateAvatar(t *testing.T) {GenerateAvatar("Bird Fish", 0, "Bird…

【PG16】后 EL 7 时代,PG 16 如何在 CentOS 7 上运行

↑ 关注“少安事务所”公众号&#xff0c;欢迎⭐收藏&#xff0c;不错过精彩内容~ ★ 本文写于 2023-09-29 PostgreSQL 16 Released 9/14, PostgreSQL 16 正式发布。从发布公告^1 和 Release Notes^2 可以看到 PG16 包含了诸多新特性和增强改进。 性能提升&#xff0c;查询计划…

XPosed项目的接入、模版制作、改名全过程

XPosed项目的接入、模版制作、改名全过程 写在前面 之前写过这篇Xposed Hook 过登录密码验证配置开发Xposed项目的文章&#xff0c;这次的接入使用的是当前最新版Android Studio&#xff0c;接入稍微有些差别&#xff0c;也记录下。 本篇文章主要是写关于XP项目接入、制作XP模…

SQL——SELECT相关的题目(力扣难度等级:简单)

目录 197、上升的温度 577、员工奖金 586、订单最多的客户 596、超过5名学生的课 610、判断三角形 620、有趣的电影 181、超过经理收入的员工 1179、重新格式化部门表&#xff08;行转列&#xff09; 1280、学生参加各科测试的次数 1965、丢失信息的雇员 1068、产品销售分…