香橙派 AIpro开发体验:使用YOLOV8对USB摄像头画面进行目标检测

香橙派 AIpro开发体验:使用YOLOV8对USB摄像头画面进行目标检测

  • 前言
  • 一、香橙派AIpro硬件准备
  • 二、连接香橙派AIpro
    • 1. 通过网线连接路由器和香橙派AIpro
    • 2. 通过wifi连接香橙派AIpro
    • 3. 使用vscode 通过ssh连接香橙派AIpro
  • 三、USB摄像头测试
    • 1. 配置ipynb远程开发环境
      • 1.1 创建一个video.ipynb 文件
      • 1.2 在远程主机中安装jupyter插件和python 插件
    • 2. 使用opencv读取USB摄像头进行拍照
    • 3. 使用opencv读取USB摄像头进行实时拍摄显示
  • 四、使用yolov8进行目标检测
    • 1. 使用torch cpu推理yolov8
    • 2. 使用opencv推理onnx模型
      • 2.1 导出yolov8的onnx模型
      • 2.2 onnx推理
    • 3. 使用npu 推理yolov8
      • 3.1 onnx转换为OM模型
      • 3.2 添加交换空间
      • 3.3 npu推理
  • 五、总结
  • 六、参考

前言

YOLOv8 作为最新的目标检测算法,以其高精度、高速度和易用性,成为许多开发者首选。而香橙派 AIpro 作为一款高性能嵌入式开发板,采用昇腾AI技术路线,集成图形处理器,拥有8GB/16GB LPDDR4X,8/20 TOPS AI算力,为 AI 应用提供了坚实的硬件基础。本篇文章将分享使用香橙派 AIpro 和 YOLOv8 结合 USB 摄像头进行物体检测的实战经验,并探讨其在实际应用中的价值。

一、香橙派AIpro硬件准备

香橙派 AIpro 开发板、USB 摄像头、电源适配器,网线,micro SD卡预烧录ubuntu系统。

img

二、连接香橙派AIpro

1. 通过网线连接路由器和香橙派AIpro

为了确保香橙派AIpro与网络的稳定连接,我们采用网线将其直接接入路由器。随后,在电脑上运行ip扫描器对内网进行全面扫描,成功识别到设备“orangepiaipro”,其IP地址为192.168.1.7。

img

2. 通过wifi连接香橙派AIpro

我们在登录香橙派AIpro之后,可以参照以下方法进行wifi的连接。
扫描wifi

sudo nmcli dev wifi

连接wifi

sudo nmcli dev wifi connect wifi名称 password wifi密码

3. 使用vscode 通过ssh连接香橙派AIpro

Tip:使用vscode可以像本地开发一样 ,在香橙派AIpro上进行远程开发。
安装vscode 插件
1.Remote - SSH
2.Remote - SSH: Editing
3.Remote Explorer
img
创建一个ssh连接,用户名默认为HwHiAiUser,登录密码默认为Mind@123

ssh HwHiAiUser@192.168.1.7

img
我们连接上之后打开桌面文件夹,在桌面进行开发
img
选择桌面路径
img
同时我们打开终端
img

三、USB摄像头测试

1. 配置ipynb远程开发环境

1.1 创建一个video.ipynb 文件

img
创建好之后保存在桌面文件夹内,vscode会同步这个目录的文件,方便我们进行开发。
img
img

1.2 在远程主机中安装jupyter插件和python 插件

我们对这两个主要的插件进行安装,其他插件会自动安装上。
img
然后我们打开video.ipynb 文件 选择我们需要的python版本。
python3.10.12 是系统自动的python版本。
base(python 3.9.2) 是anaconda的基础python版本。
我们应该使用conda 环境,最好是新建conda环境,来避免可能出现的环境依赖问题。

img

2. 使用opencv读取USB摄像头进行拍照

我们可能会遇到无法读取摄像头的错误,是因为没有权限访问摄像头。
img
直接对摄像头的权限进行降级,让当前用户可以访问

sudo  chmod 666 /dev/video0

我们在video.ipynb中进行代码编写,可以直接显示摄像头画面

import cv2
from IPython.display import display, Image

camera = cv2.VideoCapture(0)
camera.set(cv2.CAP_PROP_FOURCC,cv2.VideoWriter_fourcc('M','J','P','G'))
if not camera.isOpened():
    raise IOError("Impossible d'ouvrir la webcam")
ret, frame = camera.read()
if not ret:
    raise IOError("Impossible de capturer une image")
display(Image(data=cv2.imencode('.jpg', frame)[1]))
camera.release()

运行效果如下:
img

3. 使用opencv读取USB摄像头进行实时拍摄显示

我们在video.ipynb中进行如下python代码编写,可以直接显示摄像头画面

import cv2
import numpy as np
from IPython.display import display, clear_output,Image

# Initialize the camera
camera = cv2.VideoCapture(0)  # Use 0 for the default camera
# Set the codec to MJPG if it is supported
if camera.isOpened():
    camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
else:
    raise IOError("Cannot open the webcam")
try:
    while True:
        # Capture frame-by-frame
        ret, frame = camera.read()
        if not ret:
            raise IOError("Cannot capture frame")
        # Display the image
        clear_output(wait=True)
        # Afficher l'image capturée
        display(Image(data=cv2.imencode('.jpg', frame)[1]))
finally:
    # When everything done, release the capture
    camera.release()

本次使用的usb摄像头帧率比较低,所以有拖影,但从实时性的体验上来说,还是非常不错的。
在这里插入图片描述

四、使用yolov8进行目标检测

1. 使用torch cpu推理yolov8

本次测试使用的版本为yolov8.2 ,首先将yolov8中的ultralytics文件夹拖到香橙派AIpro的桌面上。

img
然后在video.ipynb中进行代码编写,调用yolov8库进行推理

import cv2
import numpy as np
from IPython.display import display, clear_output,Image
from ultralytics import YOLO
from time import time
# Load a model
model = YOLO('yolov8n.pt')  # pretrained YOLOv8n model
# Initialize the camera
camera = cv2.VideoCapture(0)  # Use 0 for the default camera
# Set the codec to MJPG if it is supported
if camera.isOpened():
    # camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280.0)
    # camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720.0)
    camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
else:
    raise IOError("Cannot open the webcam")
try:
    while True:
        # Capture frame-by-frame
        ret, frame = camera.read()
        if not ret:
            raise IOError("Cannot capture frame")
        s = time()
        results = model(frame,conf=0.25,iou=0.5,verbose=False)
        print(time()-s)
        for r in results:
            im = r.plot()
        # Display the image
        clear_output(wait=True)
        # Afficher l'image capturée
        display(Image(data=cv2.imencode('.jpg', im)[1]))
finally:
    # When everything done, release the capture
    camera.release()

直接调用原始库推理速度约为0.5s 一次

img

香橙派AIpro直接调用yolov8库使用torch cpu进行推理,推理时占用2核cpu,整体占用50%,如果多线程实现应该在0.2s左右,就是4-5帧。推理时内存占用也不高,表现还是不错的。

img

2. 使用opencv推理onnx模型

2.1 导出yolov8的onnx模型

img

2.2 onnx推理

编写python代码,使用opencv dnn推理onnx模型并读取usb摄像头进行检测

import cv2
import numpy as np
from IPython.display import display, clear_output,Image
from time import time
import cv2.dnn
from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_yaml
CLASSES = yaml_load(check_yaml('coco128.yaml'))['names']
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
model: cv2.dnn.Net = cv2.dnn.readNetFromONNX("yolov8n.onnx")

def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
    label = f'{CLASSES[class_id]} ({confidence:.2f})'
    color = colors[class_id]
    cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
    cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

def main(original_image):
    [height, width, _] = original_image.shape
    length = max((height, width))
    image = np.zeros((length, length, 3), np.uint8)
    image[0:height, 0:width] = original_image
    scale = length / 640
    blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
    model.setInput(blob)
    outputs = model.forward()
    outputs = np.array([cv2.transpose(outputs[0])])
    rows = outputs.shape[1]
    boxes = []
    scores = []
    class_ids = []
    for i in range(rows):
        classes_scores = outputs[0][i][4:]
        (minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
        if maxScore >= 0.25:
            box = [
                outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),
                outputs[0][i][2], outputs[0][i][3]]
            boxes.append(box)
            scores.append(maxScore)
            class_ids.append(maxClassIndex)
    result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)

    detections = []
    for i in range(len(result_boxes)):
        index = result_boxes[i]
        box = boxes[index]
        detection = {
            'class_id': class_ids[index],
            'class_name': CLASSES[class_ids[index]],
            'confidence': scores[index],
            'box': box,
            'scale': scale}
        detections.append(detection)
        draw_bounding_box(original_image, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),
                          round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))

# Initialize the camera
camera = cv2.VideoCapture(0)  # Use 0 for the default camera
# Set the codec to MJPG if it is supported
if camera.isOpened():
    # camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280.0)
    # camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720.0)
    camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
else:
    raise IOError("Cannot open the webcam")
try:
    while True:
        # Capture frame-by-frame
        ret, frame = camera.read()
        if not ret:
            raise IOError("Cannot capture frame")
        s = time()
        main(frame)
        print(time()-s)
        # Display the image
        clear_output(wait=True)
        # Afficher l'image capturée
        display(Image(data=cv2.imencode('.jpg', frame)[1]))

finally:
    # When everything done, release the capture
    camera.release()

onnx推理使用单核cpu,推理一次的速度约为0.7s

img

3. 使用npu 推理yolov8

3.1 onnx转换为OM模型

将ONNX模型转换为OM模型,用CANN提供的ATC工具将其转换为昇腾AI处理器能识别的OM模型。

atc --framework=5 --model=yolov8n.onnx --input_format=NCHW --output=yolov8n --soc_version=Ascend310B4

atc命令中各参数的含义如下:
–framework:原始框架类型,5表示ONNX。
–model:ONNX模型文件存储路径。
–input_format:输入的格式定义
–output:离线om模型的路径以及文件名。
–soc_version:昇腾AI处理器的型号。
在服务器种执行npu-smi info命令进行查询,在查询到的“Name”前增加Ascend信息,例如“Name”对应取值为310B4,实际配置的–soc_version值为Ascend310B4。

img

3.2 添加交换空间

若出现以下错误则是内存不足,可以添加交换空间

BrokenPipeError: [Errno 32] Broken pipe
/usr/local/miniconda3/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 97 leaked semaphore objects to clean up at shutdown
warnings.warn('resource_tracker: There appear to be %d ’

  1. 使用 root 用户执行:
su -
  1. 创建一个用于交换空间的文件,创建8GB的交换文件:
mkswap /swapfile
  1. 设置交换文件
mkswap /swapfile
  1. 启用交换空间
swapon /swapfile
  1. 编辑/etc/fstab文件,使交换空间开机自动挂载:
echo '/swapfile none swap defaults 0 0' >> /etc/fstab

6.验证交换空间是否生效

free -m

通过top监控可以看到 转换过程占用内存大概 12G左右,不添加虚拟缓存内存是不够用的。
img

3.3 npu推理

编写python代码使用npu推理yolov8 对usb摄像头进行检测

import os

# Verify the path
print(os.environ['LD_LIBRARY_PATH'])
import cv2
import numpy as np
from IPython.display import display, clear_output,Image
from time import time
from ais_bench.infer.interface import InferSession
from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_yaml

CLASSES = yaml_load(check_yaml('coco128.yaml'))['names']

colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))

model = InferSession(device_id=0, model_path="yolov8n.om")

def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
    label = f'{CLASSES[class_id]} ({confidence:.2f})'
    color = colors[class_id]
    cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
    cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)


def main(original_image):
    [height, width, _] = original_image.shape
    length = max((height, width))
    image = np.zeros((length, length, 3), np.uint8)
    image[0:height, 0:width] = original_image
    scale = length / 640

    blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
    
    begin_time = time()
    outputs = model.infer(feeds=blob, mode="static")
    end_time = time()
    print("om infer time:", end_time - begin_time)

    outputs = np.array([cv2.transpose(outputs[0][0])])
    rows = outputs.shape[1]

    boxes = []
    scores = []
    class_ids = []

    for i in range(rows):
        classes_scores = outputs[0][i][4:]
        (minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
        if maxScore >= 0.25:
            box = [
                outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),
                outputs[0][i][2], outputs[0][i][3]]
            boxes.append(box)
            scores.append(maxScore)
            class_ids.append(maxClassIndex)

    result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)

    detections = []
    for i in range(len(result_boxes)):
        index = result_boxes[i]
        box = boxes[index]
        detection = {
            'class_id': class_ids[index],
            'class_name': CLASSES[class_ids[index]],
            'confidence': scores[index],
            'box': box,
            'scale': scale}
        detections.append(detection)
        draw_bounding_box(original_image, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),
                          round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))

# Initialize the camera
camera = cv2.VideoCapture(0)  # Use 0 for the default camera

# Set the codec to MJPG if it is supported
if camera.isOpened():
    # camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280.0)
    # camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720.0)
    camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
else:
    raise IOError("Cannot open the webcam")

    # Define the codec and create VideoWriter object
# Get the width and height of the frames
frame_width = int(camera.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Frame width: {frame_width}, Frame height: {frame_height}")

# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 30.0, (frame_width, frame_height))  # 20.0 is the frame rate

try:
    _start_time = time()
    while time() - _start_time < 5:
        # Capture frame-by-frame
        ret, frame = camera.read()
        if not ret:
            raise IOError("Cannot capture frame")
        main(frame)
        out.write(frame)

        # Display the image
        # clear_output(wait=True)
        
        # # Afficher l'image capturée
        # display(Image(data=cv2.imencode('.jpg', frame)[1]))

finally:
    # When everything done, release the capture
    camera.release()
    out.release()

与前面torch和onnx 的推理相比,基于昇腾CANN的推理效果,在速度上有了质的飞跃。

img
yolov8使用npu推理一帧的速度达到了惊人的0.017s,相比cpu提升了20-30倍。

img

五、总结

昇腾CANN框架的优势:

  1. 推理速度显著提升: 在使用YOLOv8模型进行推理时,我发现昇腾CANN的单帧处理速度能达到0.017秒,相比CPU提升了20-30倍,这对于实时性要求高的应用场景(如自动驾驶、安防监控)至关重要。
  2. 兼容性与扩展性强: 昇腾CANN支持多种模型和算法,并随着昇腾硬件的升级不断提升性能,为开发者提供了更广阔的选择空间。
    香橙派AIpro开发板的优势:
  3. 硬件性能出色: 能够流畅运行复杂的AI算法和模型,满足我的开发需求。
  4. 易用性高: 简单的设置和配置就能将AI应用部署到开发板上进行测试和验证,极大提升了开发效率。
  5. 扩展性强: 丰富的接口方便连接其他硬件设备,为开发更复杂的AI应用提供了更多可能性。

总的来说,我对其高效的推理速度、便捷的开发体验以及强大的扩展性印象深刻。
香橙派AIpro开发板为开发者提供了一个优秀的平台,可以方便地体验和利用昇腾CANN强大的AI推理能力。我相信,随着昇腾CANN和香橙派AIpro开发板的不断发展,它们将进一步推动AI技术的应用和普及。

六、参考

CANN开发指南
香橙派官网
昇腾论坛

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/651004.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

超越连接:ZL-450边缘网关全面评测与应用案例

前言 在现代工业自动化和智能设备管理的背景下&#xff0c;对实时数据通信与设备监控的需求日益增加。ZL450边缘网关作为一款先进的串口通信解决方案&#xff0c;不仅满足了这些要求&#xff0c;还通过其多样的连接性和高效的数据处理能力&#xff0c;为企业带来了显著的效率提…

添加、修改和删除字典元素

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 由于字典是可变序列&#xff0c;所以可以随时在字典中添加“键-值对”。向字典中添加元素的语法格式如下&#xff1a; dictionary[key] value 参数…

为什么短剧突然爆火?背后究竟谁在为流量买单?

为什么短剧突然爆火&#xff1f;背后究竟谁在为流量买单&#xff1f; 文丨微三云营销总监胡佳东&#xff0c;点击上方“关注”&#xff0c;为你分享市场商业模式电商干货。 - 今年很多朋友交流的更多的商业热门话题就是“短剧”&#xff0c;目前我国拥有超10亿的短视频用户&a…

Android:将时间戳转换为本地时间格式

一、效果图 图1&#xff0c;中国的时间格式 图2&#xff0c;美国的时间格式 二、StringUtil.kt代码 import java.text.DateFormat import java.text.SimpleDateFormat import java.util.* object StringUtil {fun formatTimestamp(currentTime: Long): String {var sdf Si…

【吊打面试官系列】Java高并发篇 - 什么是乐观锁和悲观锁?

大家好&#xff0c;我是锋哥。今天分享关于 【什么是乐观锁和悲观锁?】面试题&#xff0c;希望对大家有帮助&#xff1b; 什么是乐观锁和悲观锁? 1、乐观锁&#xff1a; 就像它的名字一样&#xff0c;对于并发间操作产生的线程安全问题持乐观状态&#xff0c; 乐观锁认为竞争…

在没有足够测试数据的请情况下,如何验证前端页面的分页展示和渲染情况

问题描述&#xff1a;测试过程中&#xff0c;为了验证前端页面的展示效果及分页组件的展示情况&#xff0c;测试人员一般都会选择在数据库造数据&#xff0c;但遇到表格管理逻辑特别复杂的情况&#xff0c;可能会耗费大量的时间&#xff0c;此时我们可以选择使用工具模拟返回值…

【quarkus系列】构建可执行文件native image

目录 序言为什么选择 Quarkus Native Image&#xff1f;性能优势便捷的云原生部署 搭建项目构建可执行文件方式一&#xff1a;配置GraalVM方式二&#xff1a;容器运行错误示例构建过程分析 创建docker镜像基于可执行文件命令式构建基于dockerfile构建方式一&#xff1a;构建mic…

Geometry-Aware Attenuation Field Learning for Sparse-View CBCT Reconstruction

摘要&#xff1a; 锥形束CT&#xff08;Cone Beam Computed Tomography&#xff0c;CBCT&#xff09;是目前口腔医学中应用最广泛的一种成像方法&#xff0c;要重建一幅高质量的CBCT图像&#xff0c;需要进行数百次的X线投影&#xff08;即&#xff0c;衰减场&#xff09;在传…

三分钟“手撕”顺序表与ArrayList

前言&#xff1a; 实现顺序表的代码放开头&#xff0c;供大家更好的查阅&#xff0c;每个方法都有代码的实现。 其次我会讲解Java自带的ArrayList的实例&#xff0c;扩容机制ArrayList使用方法&#xff0c;遍历以及它的优缺点。 目录 一、自己实现的顺序表 二、Java的ArrayLi…

基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码

第一步&#xff1a;准备数据 17种猴子动物数据&#xff1a; self.class_indict ["白头卷尾猴", "弥猴", "山魈", "松鼠猴", "叶猴", "银色绒猴", "印度乌叶猴", "疣猴", "侏绒"…

Delphi 开发Android Service四种模式初探

前言&#xff1a; 本篇文章正经来说&#xff0c;其实算是我的学习履历&#xff0c;是我在不断的摸索过程中&#xff0c;总结的经验&#xff0c;不能算是一篇正经的学术文章。现在DELPHI的学习资料太少了&#xff0c;就算是有也都是基于老版本DELPHI&#xff0c;或VCL相关的内容…

AI芯片软件定义硬件架构

软件定义硬件架构 AI 应用正促使芯片制造商和 OEM 重新审视重新配置硬件的可能性。 摩尔定律放缓&#xff0c;软件应用复杂性和规模激增&#xff0c;x86架构CPU运行通用软件的传统方法已无法满足嵌入式和AI应用的高效需求。 在当前x86架构主导的环境中&#xff0c;软硬件间差…

三丰云免费虚拟主机和免费云服务器评测

三丰云是一家专业的云服务提供商&#xff0c;为用户提供免费虚拟主机和免费云服务器服务。通过对三丰云的使用体验&#xff0c;我对他们的服务进行了评测。首先&#xff0c;三丰云的免费虚拟主机性能稳定&#xff0c;网站加载速度快&#xff0c;给用户提供了良好的访问体验。其…

R可视化:另类的箱线图

介绍 方格状态的箱线图 加载R包 knitr::opts_chunk$set(echo TRUE, message FALSE, warning FALSE) library(patternplot) library(png) library(ggplot2) library(gridExtra)rm(list ls()) options(stringsAsFactors F)导入数据 data <- read.csv(system.file(&qu…

数据集005:螺丝螺母目标检测数据集(含数据集下载链接)

数据集简介 背景干净的目标检测数据集。 里面仅仅包含螺丝和螺母两种类别的目标&#xff0c;背景为干净的培养皿。图片数量约420张&#xff0c;train.txt 文件描述每个图片中的目标&#xff0c;label_list 文件描述类别 另附一个验证集合&#xff0c;有10张图片&#xff0c;e…

力扣503. 下一个更大元素 II

Problem: 503. 下一个更大元素 II 文章目录 题目描述思路复杂度Code 题目描述 思路 由于此题是环形数组&#xff0c;我们在利用单调栈模板的基础上还需要将给定数组扩大一倍&#xff0c;但实际上我们只需要利用取余的操作模拟扩大数组即可&#xff08;具体操作看代码。在解决有…

800HZ电源-高频电源行业的明星

一、800Hz电源的简介&#xff1a; 800Hz电源&#xff0c;顾名思义&#xff0c;是一种专为满足通信系统中特定频率要求而设计的电源。通常&#xff0c;800Hz电源具有极高的稳定性和精确度&#xff0c;能提供稳定的电压输出&#xff0c;确保通信设备如交换机、基站、无线路由器等…

【设计模式】JAVA Design Patterns——Commander(指挥官模式)

&#x1f50d;目的 用于处理执行分布式事务时可能遇到的所有问题。 &#x1f50d;解释 处理分布式事务很棘手&#xff0c;但如果我们不仔细处理&#xff0c;可能会带来不想要的后果。假设我们有一个电子商务网站&#xff0c;它有一个支付微服务和一个运输微服务。如果当前运输…

香橙派Kunpeng Pro测评:他给的实在太多了

文章目录 一、开箱环节1、包装配置2、开发板包装3、开发板3.1、开发版正面3.2、开发板背面 二、硬件配置1、硬件配置清单 2、配置图解 三、开机~启动&#xff01;1、运行系统1.1、外设配置1.2、系统启动1.3、官方教程 2、openEuler系统概览 四、系统测试1、性能测试1.1、安装sy…

如何基于springboot构建cas最新版源码?

环境准备 下载JDK21 https://download.oracle.com/java/21/archive/jdk-21.0.2_windows-x64_bin.zip下载gradle 8.5并配置环境变量 https://gradle.org/next-steps/?version8.5&formatbin下载项目git clone http://gitlab.ruishan.cc/meta/anka-authentication.git 开始…