Linux下Vision Mamba环境配置+多CUDA版本切换

上篇文章大致讲了下Vision Mamba的相关知识,网上关于Vision Mamba的配置博客太多,笔者主要用来整合下。
笔者在Win10和Linux下分别尝试配置相关环境。
Win10下配置 失败 \textcolor{red}{失败} 失败,最后出现的问题如下:
https://blog.csdn.net/weixin_46135891/article/details/137141378
有解决方法还请留言。

配置Linux下的Vision Mamba还是比较方便的,

目录

  • 前言
  • CUDA,cudnn下载以及安装
    • CUDA
    • cudnn
  • 多CUDA环境切换
  • Vision Mamba环境配置
    • mamba-1.1.1
    • casual-conv1d-1.1.3
    • 其他组件
  • 测试代码
  • vision mamba的简单运行
  • 参考博客

前言

笔者在linux下选用CUDA 11.8 \textcolor{red}{11.8} 11.8版本,也比较推荐读者使用此版本,方便后续环境配置。

CUDA,cudnn下载以及安装

CUDA

CUDA官网:https://developer.nvidia.com/cuda-11-8-0-download-archive?
笔者Linux版本是Ubuntu20.20的,固下载如下文件:cuda_11.8.0_520.61.05_linux.run

Cudnn官网:https://developer.nvidia.com/rdp/cudnn-archive
选择适配CUDA11.8的版本即可, 笔者选用cudnn 8.9.7 (for CUDA 11.x)
选择 --Local Installer for Linux x86_64 (Tar) 下载离线包

首先安装CUDA,采用离线安装方式,

sudo sh  cuda_11.8.0_520.61.05_linux.run

首先accpet,
然后具体配置的时,去掉Deiver,只保留 CUDA 相关。
如下图类似,(下图取自网络,不是笔者的CUDA11.8的实时截图)
在这里插入图片描述
然后正常安装即可,一般安装在了 /usr/local/CUDA-11.8

配置CUDA环境

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=/usr/local/cuda/bin:$PATH
export CUDA_HOME=/usr/local/cuda
export LIBRARY_PATH=/usr/local/cuda/lib64

如果/usr/local/中没有自动生成CUDA文件, 手动生成CUDA软连接

sudo ln -s /usr/local/cuda-11.8 /usr/local/cuda

cudnn

解压缩
tar -xvf cudnn-XX-linux-x64-vXXX.XXX.XX.tgz ## 这是最开始下载的cudnn文件

再将 刚刚解压的 cuDNN里面的对应文件拷贝至CUDA指定路径:

sudo cp include/cudnn*.h /usr/local/cuda-11.8/include
sudo cp lib/libcudnn* /usr/local/cuda-11.8/lib64
sudo chmod a+r /usr/local/cuda-11.8/include/cudnn*.h /usr/local/cuda-11.8/lib64/libcudnn*

一切弄完后,重启电脑。

多CUDA环境切换

如果读者只有一个cudaXX.X版本的文件夹可以不用看此处,此节涉及多cuda环境切换。

在/usr/local 路径下,分别执行

nvcc -V
stat cuda

如果指向同一个cuda版本,那么该版本就是正在使用的版本,而且没意外的话,应该都是cuda-11.8
输出类似如下:(下图取自网络,不是笔者的CUDA11.8的实时截图)
在这里插入图片描述

如果要切换另一个cuda版本:

sudo rm -rf /usr/local/cuda     ##这一步是去除软连接
sudo ln -s  /usr/local/cuda-XX.X  /usr/local/cuda   ##指定XX.X 为想要使用的版本

然后重新执行

nvcc -V
stat cuda

发现输出的cuda版本同时发生了变化,此时就更换成功了

比如 将cuda11.8 设置为想要的版本:

sudo rm -rf /usr/local/cuda     
sudo ln -s  /usr/local/cuda-11.8  /usr/local/cuda

Vision Mamba环境配置

重启后,电脑就有了CUDA-11.8,下面我们来具体配置Vision Mamba的环境。
笔者推荐Anaconda创建虚拟环境

#anaconda 创建py310虚拟环境
conda create -n your_name python=3.10.13 -y

安装对应的torch包

#安装虚拟环境其它包(笔者是 cuda11.8,安装pytorch如下)
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118

去github上下载 vision mamba源码包
https://github.com/hustvl/Vim
下载.zip文件然后手动解压缩

git clone https://github.com/hustvl/Vim.git

接下来先安装两个比较有问题的包,这两个装好后基本就没什么问题了。

mamba-1.1.1

方法1
下载 mamba-1.1.1的源码包 :https://github.com/state-spaces/mamba/archive/refs/tags/v1.1.1.zip
解压缩 mamba-1.1.1.zip
虚拟环境 进入到这个文件夹 执行

pip install .

方法2
如果方法1不行,来执行方法2
手动下载轮子:https://github.com/state-spaces/mamba/releases/download/v1.1.1/mamba_ssm-1.1.1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
注:此轮子只对应cuda11.8的版本,所以笔者在文章开头推荐读者使用cuda11.8的环境。

然后安装轮子

# 虚拟环境下安装
pip install /下载路径/mamba_ssm-1.1.1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

方法2的安装一般没什么问题,如果报超时问题,可以梯子或重复执行上面这个安装命令

安装好后需要执行下面这个步骤,否则后续运行会报错:

( “TypeError: Mamba.init() got an unexpected keyword argument ‘bimamba_type’.”)

读者把vision mamba源码里面的mamba-ssm替换到虚拟环境里面的mamba-ssm
具体的

sudo cp -r "其他路径/Vim-main/mamba-1p1p1/mamba_ssm" "Annotation路径/envs/mamba的虚拟环境/lib/python3.10/site-packages/" 

casual-conv1d-1.1.3

方法1
下载casual-conv1d-1.1.3的源码包 : https://github.com/Dao-AILab/causal-conv1d/archive/refs/tags/v1.1.3.zip
解压缩 casual-conv1d-1.1.3.zip
虚拟环境 进入到这个文件夹 执行

pip install .

方法2
手动下载轮子:
https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.1.3/causal_conv1d-1.1.3+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
注:此轮子只对应cuda11.8的版本,所以笔者在文章开头推荐读者使用cuda11.8的环境。

然后安装轮子

# 虚拟环境下安装
pip install /下载路径/causal_conv1d-1.1.3+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

方法2的安装一般没什么问题,如果报超时问题,可以梯子或重复执行上面这个安装命令

其他组件

如果上面两个组件都安装上了,那么以及成功99%了

#虚拟环境下
pip install timm mlflow -i https://pypi.tuna.tsinghua.edu.cn/simple

可能有遗漏的组件,后续执行代码的时候,缺少什么安装同样的方式添加

测试代码

在 VIM-main/vim/models_mamba.py的末尾添加如下代码


if __name__ == '__main__':
    # cuda or cpu
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(device)

    # 实例化模型得到分类结果
    inputs = torch.randn(1, 3, 224, 224).to(device)
    model = vim_small_patch16_stride8_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2(
        pretrained=False).to(device)
    print(model)
    outputs = model(inputs)
    print(outputs.shape)

    # 实例化mamba模块,输入输出特征维度不变 B C H W
    x = torch.rand(10, 16, 64, 128).to(device)
    B, C, H, W = x.shape
    print("输入特征维度:", x.shape)
    x = x.view(B, C, H * W).permute(0, 2, 1)
    print("维度变换:", x.shape)
    mamba = create_block(d_model=C).to(device)
    # mamba模型代码中返回的是一个元组:hidden_states, residual
    hidden_states, residual = mamba(x)
    x = hidden_states.permute(0, 2, 1).view(B, C, H, W)
    print("输出特征维度:", x.shape)

执行(run) VIM-main/vim/models_mamba.py

如果没有问题会输出 模型架构和一些结果:

torch.Size([1, 1000])
输入特征维度: torch.Size([10, 16, 64, 128])
维度变换: torch.Size([10, 8192, 16])
输出特征维度: torch.Size([10, 16, 64, 128])

如果输出以上结果,那么恭喜你,vision mamba环境配置好了

vision mamba的简单运行

希望读者能够大概看下vision mamba 的readme 来看看如何进行训练的。
也应当看看main.py的参数配置,来进行选择如何自定义一些配置信息
如下是笔者cifar-python100的训练参数:

(虚拟环境下,在Vim-main/vim/路径下  terminal终端执行代码)
CUDA_VISIBLE_DEVICES=0  python main.py  \
--model vim_small_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2 --batch-size 2 \
--drop-path 0.05 --weight-decay 0.05 --lr 1e-3 --num_workers 1 \
--data-set CIFAR \
--data-path /home/cr7/python/code/mamba_classify_test/cifer_dataset/ \
--output_dir /home/cr7/python/code/mamba_classify_test/mamba_outputs/cifar_result \
--no_amp

当然读者也可以直接配置train.py,在pycharm里面点击train.py执行,修改main.py的参数来进行想要的训练了。

以下是必须配置,否则执行的时候缺少配置报错,在main.py的对应配置地方进行修改

--batch-size , default=64  ##按照自己gpu显存来设置 太大会爆显存
--epochs, default=300  ## 训练批次
--model, default="vim_small_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2"   ## 在 models_mamba.py的结尾有4个可以选择
--data-path , default=" /home/cr7/python/code/mamba_classify_test/cifer_dataset/"   ##下载的分类数据集路径 
--data-set, default="CIFAR"  ##分类数据集名字
--num_workers ,default =4 ##根据电脑性能 调整

注:以下是 pycharm 运行 main.py必要做的事情,否则会报错
在main.py中的
def main(args):
添加一行 args.gpu=0 ##设置gpu的index
这里由于笔者只有一个gpu , 所以使用gpu序号0 做为训练gpu

不添加的话,后续运行main.py会报错:

AttributeError: 'Namespace' object has no attribute 'gpu'

输出大致如下。

(mamba_py310) cr7@cr7:~/python/code/mamba_classify_test/Vim/vim$ CUDA_VISIBLE_DEVICES=0  python main.py  \
> --model vim_small_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2 --batch-size 2 \
> --drop-path 0.05 --weight-decay 0.05 --lr 1e-3 --num_workers 1 \
> --data-set CIFAR \
> --data-path /home/cr7/python/code/mamba_classify_test/cifer_dataset/ \
> --output_dir /home/cr7/python/code/mamba_classify_test/mamba_outputs/cifar_result \
> --no_amp
Not using distributed mode
Namespace(batch_size=2, epochs=300, bce_loss=False, unscale_lr=False, model='vim_small_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2', input_size=224, drop=0.0, drop_path=0.05, model_ema=True, model_ema_decay=0.99996, model_ema_force_cpu=False, opt='adamw', opt_eps=1e-08, opt_betas=None, clip_grad=None, momentum=0.9, weight_decay=0.05, sched='cosine', lr=0.001, lr_noise=None, lr_noise_pct=0.67, lr_noise_std=1.0, warmup_lr=1e-06, min_lr=1e-05, decay_epochs=30, warmup_epochs=5, cooldown_epochs=10, patience_epochs=10, decay_rate=0.1, color_jitter=0.3, aa='rand-m9-mstd0.5-inc1', smoothing=0.1, train_interpolation='bicubic', repeated_aug=True, train_mode=True, ThreeAugment=False, src=False, reprob=0.25, remode='pixel', recount=1, resplit=False, mixup=0.8, cutmix=1.0, cutmix_minmax=None, mixup_prob=1.0, mixup_switch_prob=0.5, mixup_mode='batch', teacher_model='regnety_160', teacher_path='', distillation_type='none', distillation_alpha=0.5, distillation_tau=1.0, cosub=False, finetune='', attn_only=False, data_path='/home/cr7/python/code/mamba_classify_test/cifer_dataset/', data_set='CIFAR', inat_category='name', output_dir='/home/cr7/python/code/mamba_classify_test/mamba_outputs/cifar_result', device='cuda', seed=0, resume='', start_epoch=0, eval=False, eval_crop_ratio=0.875, dist_eval=False, num_workers=1, pin_mem=True, distributed=False, world_size=1, dist_url='env://', if_amp=False, if_continue_inf=False, if_nan2num=False, if_random_cls_token_position=False, if_random_token_rank=False, local_rank=0)
Creating model: vim_small_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2
number of params: 25450084
Start training for 300 epochs
Epoch: [0]  [    0/25000]  eta: 22:46:27  lr: 0.000001  loss: 4.2079 (4.2079)  time: 3.2795  data: 0.0525  max mem: 707
Epoch: [0]  [   10/25000]  eta: 2:23:41  lr: 0.000001  loss: 4.6698 (4.6594)  time: 0.3450  data: 0.0049  max mem: 765
Epoch: [0]  [   20/25000]  eta: 1:25:18  lr: 0.000001  loss: 4.7118 (4.7024)  time: 0.0512  data: 0.0001  max mem: 765
Epoch: [0]  [   30/25000]  eta: 1:04:32  lr: 0.000001  loss: 4.7599 (4.6847)  time: 0.0506  data: 0.0001  max mem: 765
Epoch: [0]  [   40/25000]  eta: 0:54:04  lr: 0.000001  loss: 4.7495 (4.6971)  time: 0.0513  data: 0.0001  max mem: 765
Epoch: [0]  [   50/25000]  eta: 0:47:35  lr: 0.000001  loss: 4.6873 (4.6862)  time: 0.0515  data: 0.0001  max mem: 765
Epoch: [0]  [   60/25000]  eta: 0:43:12  lr: 0.000001  loss: 4.6870 (4.6894)  time: 0.0506  data: 0.0001  max mem: 765
Epoch: [0]  [   70/25000]  eta: 0:40:04  lr: 0.000001  loss: 4.6236 (4.6846)  time: 0.0506  data: 0.0001  max mem: 765
Epoch: [0]  [   80/25000]  eta: 0:37:45  lr: 0.000001  loss: 4.5900 (4.6900)  time: 0.0512  data: 0.0001  max mem: 765
Epoch: [0]  [   90/25000]  eta: 0:36:03  lr: 0.000001  loss: 4.6688 (4.6900)  time: 0.0528  data: 0.0001  max mem: 765

参考博客

linux 下 多CUDA版本切换: https://blog.csdn.net/weixin_43408382/article/details/128358138
linux 下 vision mamba环境配置:https://blog.csdn.net/qq_52811934/article/details/136818016
linux 下 vision mamba配置的可能问题:https://blog.csdn.net/weixin_43408382/article/details/128358138

(笔者不建议参考下文博客中的cuda版本切换的方法)
linux 下 cuda11.8的安装https://blog.csdn.net/w946612410/article/details/131786512

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/647438.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入了解数据库设计中的规范化与反规范化

目录 零、前言 一、一些基本术语 二、关系模式 2.1. 什么是关系模式 2.2. 示例 三、数据依赖 3.1. 函数依赖 3.1.1. 完全函数依赖 3.1.2. 部分函数依赖 3.1.3. 传递函数依赖 3.2. 多值依赖 3.3. 连接依赖 四、规范化 4.1. 第一范式(1NF) …

C++/ cuda kernel中的模版元编程识别 kernel 模版的数据类型

1,模版元编程 模板元编程是一种利用 C 模板系统在编译时进行计算和生成代码的技术。其原理基于模板特化、递归、模板参数推导等特性,通过模板实例化和展开,在编译时生成代码,以实现在编译期间进行复杂计算和代码生成的目的。 2&am…

Git--本地仓库

文章目录 工作区和暂存区工作区(Working Directory)版本库(Repository) 初始化git仓库添加文件到版本库步骤 查看修改内容查看工作区和暂存区状态已add文件已修改/新增 的未add文件git跟踪修改原理 查看提交历史版本回退撤销修改撤…

【组合数学】常考试题答案

一、单项选择题(每小题3分,共15分) 1. 用3个“1”和4个“0”能组成( )个不同的二进制数字。 A. 35 B. 36, C. 37, D. 38 2. 整除300的正整数的个数为(  )。 A. 14…

面试中算法(A星寻路算法)

一、问题需求: 迷宫寻路游戏中,有一些小怪物要攻击主角,现在希望你给这些小怪物加上聪 明的AI (Artificial Intelligence,人工智能),让它们可以自动绕过迷宫中的障碍物,寻找到主角的所在。 A星…

DNS服务的部署与配置(2)

1、dns的安装及开启 dnf install bind.x86_64 -y #安装 #Berkeley Internet Name Domain (BIND) systemctl enable --now named #启用dns服务,服务名称叫named firewall-cmd --permanent --add-servicedns #火墙设置 firewall-cmd --reload …

学 Java 具体能干什么?

学习 Java 后,你可以从事许多不同的工作和项目,涵盖了广泛的应用领域。以下是一些具体的应用场景和工作方向: 1. 企业级应用开发 Java 是企业级应用开发的首选语言之一,特别适合开发大规模、分布式、多层次的企业应用程序。 Jav…

使用 LangFuse 意外被挂马!我是怎么恢复系统稳定的?

在使用 LangFuse 过程中,被意外挂马!通过一番折腾服务恢复正常~ 本文将详细介绍应对恶意脚本和进程的完整方案,包括识别、清理、恢复和预防步骤。 阿里云扫到的信息 被执行的 Base64 SUlaQnRTCmV4ZWMgJj4vZGV2L251bGwKSUhDa0hQbmQ9Li8uJChkYXRlfG1kNXN1bXxoZWFkIC1jMjApCl…

深度学习面试问题总结(21)| 模型优化

本文给大家带来的百面算法工程师是深度学习模型优化面试总结,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,我们还将介绍一些常见的深度学习面试问题,并提供参考的回答及其理论基础&a…

【WEEK13】 【DAY5】Shiro第五部分【中文版】

2024.5.24 Friday 接上文【WEEK13】 【DAY4】Shiro第四部分【中文版】 目录 15.7.Shiro请求授权的实现15.7.1.修改ShiroConfig.java15.7.1.1.添加一行验证授权的代码15.7.1.2.重启 15.7.2.修改MyController.java15.7.3.修改ShiroConfig.java15.7.4.重启15.7.5.修改UserRealm.ja…

汽车以太网发展现状及挑战

一、汽车以太网技术联盟 目前推动汽车以太网技术应用与发展的组织包括:OPEN Alliance(One-Pair Ether-Net Alliance SIG)联盟,主要致力于汽车以太网推广与使用,该联盟通过推进 BroadR- Reach 单对非屏蔽双绞线以太网传…

深入探索python编程中的字典结构

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、字典的特点与基础操作 二、安全访问与哈希函数 三、字典的应用案例 四、总结 在编程的…

基于Python Selenium web测试工具 - 基本用法详解

这篇文章主要介绍了Selenium(Python web测试工具)基本用法,结合实例形式分析了Selenium的基本安装、简单使用方法及相关操作技巧,需要的朋友可以参考下 本文实例讲述了Selenium基本用法。分享给大家供大家参考,具体如下: Seleni…

代码随想录|Day42|动态规划 part07|● 70. 爬楼梯 (进阶)● 322. 零钱兑换 ● 279.完全平方数

70. 爬楼梯 &#xff08;进阶&#xff09; 322. 零钱兑换 class Solution: def climbStairs(self, n: int) -> int: if n < 1: return n dp [0] * (n 1) dp[0] 0 dp[1] 1 dp[2] 2 for i in range(3, n 1): dp[i] dp[i - 1] dp[i - 2] return dp[n] 279.完全平方数…

moviepy入门

1. 简介 由于恶心的工作和没有规划的部门安排&#xff0c;我被排到了算法部门&#xff0c;从事和算法没有半毛钱关系的业务上&#xff0c;也就是。。。搞视频。咋说呢&#xff1f;视频这东西我没有一点基础&#xff0c;还好有前人写好的代码&#xff0c;用的是moviepy和ffmpeg…

在CSDN上成长的感悟,你的粉丝长啥样?

文章目录 一、写作的初衷1. 记录所学内容2.巩固所学知识3.分享与帮助4.方便后续查找5.获取激励 二、你的粉丝长啥样&#xff1f;1. 粉丝的特点与困惑2. 关于粉丝&#xff0c;细思极恐 三、继续前行、坚持初心 在CSDN上写博文&#xff0c;对于我来说&#xff0c;不仅仅是一个记录…

(2024,attention,可并行计算的 RNN,并行前缀扫描)将注意力当作 RNN

Attention as an RNN 公众号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 3. 方法 3.1 注意力作为一种&#xff08;多对一的&#xff09;RNN 3.2 注意力作为&#xff08;多对多&…

Linux C++ Socket 套接字、select、poll、epoll 实例

文章目录 1. 概述2. TCP 网络编程实例2.1 服务器端2.2 客户端2.3 运行截图 3. I/O 模型3.1 阻塞式I/O模型3.2 非阻塞I/O模型3.3 I/O 复用模型3.4 信号驱动式I/O3.5 异步I/O模型 4. I/O复用之 select4.1 select 函数描述4.2 服务端代码4.3 客户端代码4.4 运行截图 5. I/O复用之 …

音视频开发9 FFmpeg 解复用框架--如何将一个影音文件(mp4文件/wav文件) 最终播放起来

一&#xff0c;播放器框架 二 常用音视频术语 容器&#xff0f;文件&#xff08;Conainer/File&#xff09;&#xff1a; 即特定格式的多媒体文件&#xff0c; 比如mp4、flv、mkv等。 媒体流&#xff08;Stream&#xff09;&#xff1a; 表示时间轴上的一段连续数据&#xff0…

jmeter之测试计划

一、测试计划作用 测试计划是jmeter的默认控件所有线程组都是测试计划的下级控件测试计划可以配置用户自定义的变量测试计划可以配置线程组的串行或并行 二、查看界面 名称&#xff1a;可以修改自定义的名称注释&#xff1a;解释测试计划是用来做什么的用户自定义的变量&…