光速入门python的OpenCV

前言

欢迎来到我的博客

个人主页:北岭敲键盘的荒漠猫-CSDN博客

 本文整理python的OpenCV模块的关键知识点

争取用最短的时间入门OpenCV

并且做到笔记功能直接复制使用

OpenCV简介

不浪费时间的介绍:

就是类似于ps操作图片。

至于为什么不直接用ps,因为只有程序能完成ps的操作,这样才能完全自动化2小时不间断的执行一些程序,总不能执行到一定地方要等你人为的在ps中做好图片再来执行程序吧。

功能点罗列:

画图,图片高斯模糊,腐蚀膨胀等处理,开启摄像头。

最基本的使用

导入模块:import cv2
方法作用
cv2.getVersionString()返回OpenCV的版本
cv2.imread(文件地址,图片灰彩类型)

读取文件,用于实例化对象

灰彩类型:(可以不写)

cv2.IMREAD_COLOR读入彩色图像cv2.IMREAD_GRAYSCALE读入灰色图像

对象.shape返回图片的大小(像素)
cv2.imshow(窗口名,图片对象)返回个窗口用于展示这个图片
cv2.waitKey(自动关闭时间)

窗口不自动关闭,知道按下任意键或者到规定时间(时间为微秒)

返回他按得键的代号数字

到时间返回-1

cv2.imwrite(保存路径和文件名,保存的图片)保存编辑的图片

注意:

这个库不支持任何中文!!!!!

不管是图片文件命名还是窗口等

一律别用中文!!!!!!!

(至少我的版本不支持任何中文)

案例演示:

import cv2#导入库
print(cv2.getVersionString())#返回版本号
image=cv2.imread("konglong.jpg")#导入图片,实例化
print(image.shape)#返回图片的大小和通道

cv2.imshow("阿萨德",image)#展示图片
cv2.waitKey(1000)#设置暂停
cv2.imwrite("okok.jpg",image)#保存图片

结果:

打印信息

保存okok图片

展示图片(代码中用中文做窗口所以会乱码)

 视频的打开方式

我们视频有两种:摄像头,视频文件

用到的函数:

读取视频或摄像头:cv2.VideoCapture(视频或者摄像头的指针)
返回视频读取的照片:cap.read()

开启摄像头

思路:原理就是对这摄像头一遍遍截图。然后我们不断的刷新显示的图片。

代码如下:

import cv2#导入库
cap=cv2.VideoCapture(0)#读取摄像头
while True:#循环
    valu,video=cap.read()#读取摄像头内容
    show=cv2.imshow("video",video)#展示摄像头
    key=cv2.waitKey(1)#设置等待0.001秒刷新一次
    print(key)
    if key!=-1:#如果不是到时间刷新的视频就退出视频
        break

结果如下:

 按下别的键就关闭了。(字母有时候不行,数字或者特殊按键相对靠谱点)

视频打开方式

代码:

import cv2#导入库
cap=cv2.VideoCapture("bingdu.mp4")
while True:
    valu,video=cap.read()
    show=cv2.imshow("video",video)
    key=cv2.waitKey(1)
    print(key)
    if key!=-1:
        break

基本一样不截图了

灰度图获取与处理

介绍:OpenCV储存图片实际上是储存三原色的三张图片,最后整合在一起。采用bgr图像。

灰度加权平均:

cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

展示隔色彩图像:

cv2.imshow("blue",image[:,:,0])
cv2.imshow("green",image[:,:,1])
cv2.imshow("red",image[:,:,2])

用法演示:(图片太大不展示效果了)

import cv2
image=cv2.imread("konglong.jpg")
cv2.imshow("blue",image[:,:,0])
cv2.imshow("green",image[:,:,1])
cv2.imshow("red",image[:,:,2])
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",gray)
cv2.waitKey()

裁剪图像

crop=image[y轴开始裁剪位置:结束位置,x轴开始裁剪位置:结束位置]

水平为x,垂直为y

案例演示:

import cv2
image=cv2.imread("konglong.jpg")
print(image.shape)
y,h,x,w=100,300,100,600
crop=image[y:h,x:w]
cv2.imshow("crop",crop)
cv2.waitKey()

图形绘制

可用于标记识别的物品

(注意,所有的粗细参数输入负数后就是填充图像)

绘制直线

cv2.line(图片, 起点坐标, 终点坐标, 颜色, 粗细)

案例演示

import cv2
image=cv2.imread("okok.jpg")
cv2.line(image,(0,0),(700,600),(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

效果演示:

绘制方形

cv2.rectangle(图片, 起点坐标, 终点坐标, 颜色, 粗细)

案例演示

import cv2
image=cv2.imread("okok.jpg")
cv2.rectangle(image,(309,310),(344,352),(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

绘制圆形

cv2.circle(image,原点坐标,半径,颜色,粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.circle(image,(329,329),30,(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

 椭圆绘制

cv2.ellipse(图片, 中心点坐标, 横纵轴长度(元组), 旋转角度, 起始角度, 结束角度, 颜色, 粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.ellipse(image, (256, 256), (100, 50), 60, 0, 360, (0, 255, 0), -1)
cv2.imshow("image",image)
cv2.waitKey()

绘制文字

cv2.putText(图片, 文字, 位置, 字体, 文字大小, 颜色, 粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.putText(image, "how cool am i!", (250, 350), cv2.FONT_HERSHEY_SIMPLEX, 2, (65,54,87), 2)
cv2.imshow("image",image)
cv2.waitKey()

噪点处理

噪点描述:拍摄时信号传输收到干扰产生的杂色,如下:

噪点处理,其实就是让他变模糊,模糊之后边界就会不明显。但是也会影响一定的画面。

所以一般情况下,是对图像的局部噪点严重的区域进行区域内的噪点处理。

注意下面的核必须是奇数。

高斯模糊

cv2.GaussianBlur(图像,高斯核,sigmaX,sigmaY,边界样式)
x与y差越大越模糊,0的话就是自行计算
实际上一般可以用下面形式进行使用
cv2.GaussianBlur(image,(5,5),0)

中值滤过(像素排序取中值平滑处理)

cv2.medianBlur(图片,核)

案例演示

import cv2
image=cv2.imread("zaodian.jpeg")
cv2.imshow("image",image)
gauss=cv2.GaussianBlur(image,(5,5),0,11)
cv2.imshow("gauss",gauss)
median=cv2.medianBlur(image,5)
cv2.imshow("median",median)
cv2.waitKey()

效果演示

图片特征提取

(但是OpenCV提取图像特征的水平有限,如果需要特别的精准可以尝试别的库)

提取图片的特征,比如说转角,边缘,纹理啥的。

提取思路:先把图像给转化为灰度图,然后在灰度图中匹配转角这类的特征。

函数:

cv2.cvtColor(图片,cv2.COLOR_BGR2GRAY) #灰度处理
cv2.goodFeaturesToTrack(图片,最大特征数,点的质量,特征最小的距离)
.ravel()#点的坐标

案例演示

import cv2
image=cv2.imread("okok.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
corners=cv2.goodFeaturesToTrack(gray,500,0.1,10)
for corner in corners:
    x,y=corner.ravel()
    cv2.circle(image,(int(x),int(y)),2,(255,0,255),-1)
cv2.imshow("corners",image)
cv2.waitKey()

其实这些特征提取也不是特别的精准,看图中的特征点也能看出来,这些特征点也不足以准确的识别这个画面。

图片匹配

原理:

也是把指定的图片转化为灰度图,然后找特征点,之后在指定的图片中匹配有没有相似的特征点。

缺点:

对图片的大小敏感。也就是说我们给的图片距离镜头20m,但是在指定的图片中,这个图片在镜头50m的地方,就会因为大小不同而匹配不到。

解决思路:

可以改变图像的大小进行多次匹配,或者减少匹配的精度要求(误判多)。

(用到了numpy模块)

函数

灰度处理:cv2.cvtColor(图片,cv2.COLOR_BGR2GRAY)
匹配图像:cv2.matchTemplate(gray_video, target, cv2.TM_CCOEFF_NORMED)
获取坐标:numpy.where(match >= 匹配相似度)

案例演示

(我写的这个识别度不是很高,不过能识别基本的功能,有点人工智障)

调用摄像头实时识别书本上的java。

代码案例

import cv2
import numpy as np
image=cv2.imread("java.jpg")
video=cv2.VideoCapture(0)
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
x1,y1=617,608
x2,y2=967,734
target=gray[y1:y2,x1:x2]
cv2.imshow("okk",target)
h,w=target.shape[0:2]
print("{},{}".format(h,w))
a=1
while True:#循环
    valu,video1=video.read()#读取摄像头内容
    gray_video=cv2.cvtColor(video1,cv2.COLOR_BGR2GRAY)
    if a==1:
        a=2
        cv2.imshow("okkk",gray_video)
    match = cv2.matchTemplate(gray_video, target, cv2.TM_CCOEFF_NORMED)
    place = np.where(match >= 0.9)
    print(place)
    for p in zip(*place[::-1]):
        x_1, y_1 = p[0], p[1]
        x_2, y_2 = x_1 + w, y_1 + h
        print(x_1,x_2)
        cv2.rectangle(video1,(x_1, y_2),(x_2, y_2),(156, 124, 21), 1)
    show=cv2.imshow("video",video1)#展示摄像头
    key=cv2.waitKey(1)#设置等待0.001秒刷新一次
    if key!=-1:#如果不是到时间刷新的视频就退出视频
        break

效果演示

嗯人工智障,识别条件特别苛刻。

不过也算是能够完成实时识别的功能了。

图像梯度算法

简介一下图像梯度:

图像梯度就像地理地图的等高线一样。

给我们分辨一个区域的图像像素变化的强度,如果他变化强度比较大,那么他大概率是图形的边缘。可以利用图像的梯度来分辨图像中的不同的物体。

拉普拉斯算子

作用:利用梯度的方法检测图像边缘,轮廓以及纹理。

函数:

常用写法:cv2.Laplacian(图片,cv2.CV_64F)
完整写法:cv2.Laplacian(image, dest, ddepth, ksize, scale, delta, borderType)
image是输入图像,dest是输出图像,ddepth是输出图像的深度,ksize是卷积核的大小,scale是拉普拉斯算子的系数

案例演示:

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
laplacian=cv2.Laplacian(gray,cv2.CV_64F)
cv2.imshow("yuantu",image)
cv2.imshow("suanfa",laplacian)
cv2.waitKey()

效果演示:

 canny算子

函数:

cv2.Canny(gray,边缘1,边缘2)

原理:

像素变化强度大于边缘2被判定为是边界,小于边界1被判定为不是边界。在两者之间的区域根据已经判断的区域进行判断。

源码如下:

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
canny=cv2.Canny(gray,100,200)
canny2=cv2.Canny(gray,50,100)
cv2.imshow("yuantu",image)
cv2.imshow("canny",canny)
cv2.imshow("canny2",canny2)
cv2.waitKey()

效果演示:

好处就是自己能规定他判断的严格程度。

阈值算法(二值化)

普通算法

描述:众所周知,我们世界的颜色并不是绝对的黑白,我们由黑白之间可以配出很多种灰色。

我们就可以用这个原理来把这些灰色绝对化。满足某个值的就变成黑色,不满足的就是白色。

这样就可以识别一些黑暗环境中的文字或者物品。

(但也别指望太准,要是拿个你自己都分辨不出来的图片,用这个也不容易。。。)

函数

cv2.threshold(图片,阈值,最大灰度,处理方法)
本案例用的函数:cv2.threshold(gray,100,255,cv2.THRESH_BINARY)
(因为这张照片环境明堂堂的。。。)

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret,binary=cv2.threshold(gray,100,255,cv2.THRESH_BINARY)
cv2.imshow("binary",binary)
cv2.waitKey()

效果演示

分区二值化算法

OpenCV有内置的分区二值化算法,自动计算这个小区域的阈值,并设定合适的阈值。

函数

函数:(案例)
cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,115,1)

该函数有以下参数:

    src: 要二值化的原始图像。

    maxval: 阈值的最大值。

    adaptiveMethod: 用于计算阈值的方法。有两个选项可供选择:cv2.ADAPTIVE_THRESH_MEAN_C和cv2.ADAPTIVE_THRESH_GAUSSIAN_C。推荐使用默认的cv2.ADAPTIVE_THRESH_GAUSSIAN_C。

    thresholdType: 阈值类型。可以是cv2.THRESH_BINARY或cv2.THRESH_BINARY_INV。推荐使用默认的cv2.THRESH_BINARY。

    blockSize: 每个局部区域的大小,用来计算局部阈值。

    C: 从平均值或加权平均值中减去的常数。该参数在计算局部阈值时起到调整阈值的作用。

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
binary_adaptive=cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,115,1)
cv2.imshow("binary",binary_adaptive)
cv2.waitKey()

结果演示

可以看到,明显的比自己写的那个好用。

大金算法

算法原理:找两个最大的值,然后取两个值的中心。让黑白差异最大化。

函数

cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

好处

完全不用咱们自己设置阈值,他自己就可以设置的明明白白的。

但是也有缺点,不如自己设置的完美,有时候可能不是很好用。

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret1,binary_otsu=cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow("binary",binary_otsu)
cv2.waitKey()

效果演示

腐蚀与膨胀

腐蚀:就是给图像变瘦一点(减少白色)

膨胀:相反,给图像变胖一点(增加白色)

作用:可以处理图像边缘,放大或者缩小图像的细节。

函数

他们都需要创建一个核

np.ones((5, 5), np.uint8)

膨胀与腐蚀

cv2.erode(图像, kernel)  # 腐蚀
cv2.dilate(图像, kernel)  # 膨胀

案例演示:

import cv2
import numpy as np
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret1,binary_otsu=cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
kernel = np.ones((5, 5), np.uint8)
erosion = cv2.erode(binary_otsu, kernel)  # 腐蚀
dilate = cv2.dilate(binary_otsu, kernel)  # 膨胀
cv2.imshow("binary",binary_otsu)
cv2.imshow("er",erosion)
cv2.imshow("di",dilate)
cv2.waitKey()

效果演示:

腐蚀

膨胀

 这里看到,明明是腐蚀但是感觉像是做出膨胀的效果,这是因为这个是腐蚀白色。所以对于黑色来说是膨胀了。

总结

OK,这些就是OpenCV的基础了。

他还有很多深入的算法,需要自己挖掘。

掌握了这些就能实现一些基本的功能了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/644570.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

社交媒体数据恢复:绿洲

本教程将向您展示如何在绿洲平台上备份和恢复数据,但不涉及推荐任何具体的数据恢复软件。 一、绿洲平台数据备份 为了确保数据的安全,在日常使用过程中,我们需要定期备份绿洲平台上的数据。以下是备份绿洲平台数据的步骤: 登录绿…

【SpringCloud】服务注册与发现

目录 Eureka/注册中心简介模式 使用Eureka实现注册中心1.创建一个名称为demo-eureka-server的Spring Boot项目2.添加项目依赖3. 在启动类添加启动注解4.添加配置信息Eureka的自我保护机制为Eureka Server添加用户认证1.添加依赖2. 添加配置信息3.添加放行代码4.启动服务&#x…

springboot+vue+mybatis校园兼职平台+PPT+论文+讲解+售后

社会的发展和科学技术的进步,互联网技术越来越受欢迎。网络计算机的生活方式逐渐受到广大人民群众的喜爱,也逐渐进入了每个学生的使用。互联网具有便利性,速度快,效率高,成本低等优点。 因此,构建符合自己要…

VMware虚拟机中ubuntu使用记录(10)—— 如何在Ubuntu18.04中使用自己的单目摄像头运行ORB_SLAM3(亲测有效,踩坑记录)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、ORB_SLAM3源码编译二、ORB_SLAM3实时单目相机测试1. 查看摄像头的话题2. 运行测试 三. 运行测试可能的报错1. 报错一(1) 问题描述(2) 原因分析(3) 解决 2. …

得帆信息PMO总监李健达受邀为第十三届中国PMO大会演讲嘉宾

全国PMO专业人士年度盛会 上海得帆信息技术有限公司aPaaS业务线副总裁、PMO总监李健达先生受邀为PMO评论主办的2024第十三届中国PMO大会演讲嘉宾,演讲议题为“AI时代的PMO工作法”。大会将于6月29-30日在北京举办,敬请关注! 议题简要&#x…

天干物燥小心火烛-智慧消防可视化大屏,隐患防治于未然。

智慧消防可视化大屏通常包括以下内容: 1.实时监控: 显示消防设备、传感器、监控摄像头等设备的实时状态和数据,包括火灾报警、烟雾报警、温度报警等。 2.建筑结构: 显示建筑物的结构图和平面图,包括楼层分布、消防通…

HDFS 组织架构

优质博文:IT-BLOG-CN 一、HDFS 概述 HDFS 产生背景: 随着数据量越来越多,一个系统存储不下所有的数据,那么就需要分配到多个操作系统的磁盘中进行存储,但是不方便管理和维护,迫切需要一种系统来管理多台机…

技术前沿 |【BLIP:统一理解和生成的自举多模态模型研究】

BLIP:统一理解和生成的自举多模态模型研究 摘要引言一、BLIP模型概述二、 BLIP模型在多模态任务中的应用三、总结 摘要 本文介绍了BLIP(Bootstrapping Language-Image Pre-training)模型,一个前沿的多模态模型,通过自…

2024 一键批量下载雪球和东方财富文章导出excel和pdf

之前分享过雪球批量下载工具2023 批量下载雪球文章导出pdf,以市场高标解读这个号为例,下载效果: 下载文章后用我开发的htmltopdf.exe批量转换html为pdf,不过要注意不要放在中文目录下,否则提示错误 utf-8 codec cant d…

数据结构之栈和队列(超详解

目录 一.栈 1.栈的基本概念 2.栈的基本操作 3.栈的储存结构 ①栈的顺序储存 (1)基本概念 (2)代码实现 ②栈的链式储存 (1)基本概念 (2)代码实现 二.队列 1.队列的基本概念 2.队列的基本操作 3.队列的储存结构 ①队列的链式储存 (1)基本概念 ​编辑 (2)代码实现 ②…

浅析3D NAND多层架构的可靠性问题

SSD的存储介质是什么,它就是NAND闪存。那你知道NAND闪存是怎么工作的吗?其实,它就是由很多个晶体管组成的。这些晶体管里面存储着电荷,代表着我们的二进制数据,要么是“0”,要么是“1”。 目前业内3D-NAND工…

【吊打面试官系列】Java高并发篇 - ReadWriteLock 是什么 ?

大家好,我是锋哥。今天分享关于 【ReadWriteLock 是什么 ?】面试题,希望对大家有帮助; ReadWriteLock 是什么 ? 首先明确一下,不是说 ReentrantLock 不好,只是 ReentrantLock 某些时候有局限。 …

【动态规划】斐波那契数列模型(C++)

目录 1137.第N个泰波那契数 解法(动态规划) 算法流程 1. 状态表⽰: 2. 状态转移⽅程: 3. 初始化: 4. 填表顺序: 5. 返回值: C算法代码 优化: 滚动数组 测试: …

bootstrap实现九宫格效果(猫捉老鼠游戏)

最近,孩子的幼儿园让家长体验“半日助教活动”,每个家长需要讲授15-20分钟的课程。作为一名程序员,实在没有能教的课程,只能做了一个小游戏,带着小朋友们熟悉数字。 效果大致是这样的。九宫格的左上角是一只小猫图片&…

一张图片中有多个一样的目标物体,分别进行识别定位分割(Python实现)

需求: 一张图片中有多个目标物体,将多个目标物体进行识别分割定位 import cv2 import numpy as npdef show_photo(name,picture):cv2.imshow(name,picture)cv2.waitKey(0)cv2.destroyAllWindows()img_path r"test3.png" img cv2.imread(img…

社交媒体数据恢复:聊天宝

请注意,本教程仅针对聊天宝应用程序,而非其他聊天软件。以下是详细的步骤: 首先,请确保您已经登录了聊天宝应用程序。如果您尚未登录,请使用您的账号登录。 在聊天宝主界面,找到您希望恢复聊天记录的对话框…

LeetCode - 数组 - 四数之和

题目地址 描述 给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复)&#x…

【机器学习与大模型】驱动下的应用图像识别与处理

摘要: 本文深入探讨了机器学习在图像识别与处理领域的应用,特别是在大模型的推动下所取得的巨大进展。详细阐述了图像识别与处理的基本原理、关键技术,以及机器学习算法和大模型如何提升其性能和准确性。通过实际案例分析了其在多个领域的广泛…

[WUSTCTF2020]level3

base64换表 但是这的表有一个引用 模拟执行 #DRKCTF{}aABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789/ flag[ord(i) for i in a] for i in range(0,10):flag[i],flag[19-i]flag[19-i],flag[i] for i in flag:print(chr(i),end)新表 TSRQPONMLKJIHGFEDCBAU…

技术速递|无障碍应用程序之旅:键盘可访问性和 .NET MAUI

作者:Rachel Kang 排版:Alan Wang 首先让我们一起来看看您的应用程序是否支持键盘访问: 启动您的其中一个应用。如果您的设备尚未连接物理键盘,请连接物理键盘。像平常一样导航您的应用程序,并且仅使用键盘来执行此操…