使用FP8加速PyTorch训练的两种方法总结

在PyTorch中,FP8(8-bit 浮点数)是一个较新的数据类型,用于实现高效的神经网络训练和推理。它主要被设计来降低模型运行时的内存占用,并加快计算速度,同时尽量保持训练和推理的准确性。虽然PyTorch官方在标准发布中尚未全面支持FP8,但是在2.2版本中PyTorch已经包含了对FP8的“有限支持”并且出现了2个新的变量类型,

torch.float8_e4m3fn

torch.float8_e5m2

,而H100也支持这种类型,所以这篇文章我们就来介绍如何使用FP8来提高训练效率

模型架构

我们定义了一个Vision Transformer (ViT)支持的分类模型(使用流行的timm Python包版本0.9.10)以及一个随机生成的数据集。我们选择了ViT-Huge的有6.32亿个参数的最大的模型,这样可以演示FP8的效果。

 import torch, time
 import torch.optim
 import torch.utils.data
 import torch.distributed as dist
 from torch.nn.parallel.distributed import DistributedDataParallel as DDP
 import torch.multiprocessing as mp
 
 # modify batch size according to GPU memory
 batch_size = 64
 
 from timm.models.vision_transformer import VisionTransformer
 
 from torch.utils.data import Dataset
 
 
 # use random data
 class FakeDataset(Dataset):
     def __len__(self):
         return 1000000
 
     def __getitem__(self, index):
         rand_image = torch.randn([3, 224, 224], dtype=torch.float32)
         label = torch.tensor(data=[index % 1000], dtype=torch.int64)
         return rand_image, label
 
 
 def mp_fn(local_rank, *args):
     # configure process
     dist.init_process_group("nccl",
                             rank=local_rank,
                             world_size=torch.cuda.device_count())
     torch.cuda.set_device(local_rank)
     device = torch.cuda.current_device()
     
     # create dataset and dataloader
     train_set = FakeDataset()
     train_loader = torch.utils.data.DataLoader(
         train_set, batch_size=batch_size,
         num_workers=12, pin_memory=True)
 
     # define ViT-Huge model
     model = VisionTransformer(
             embed_dim=1280,
             depth=32,
             num_heads=16,
         ).cuda(device)
     model = DDP(model, device_ids=[local_rank])
 
     # define loss and optimizer
     criterion = torch.nn.CrossEntropyLoss()
     optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
 
     model.train()
 
     t0 = time.perf_counter()
     summ = 0
     count = 0
 
     for step, data in enumerate(train_loader):
         # copy data to GPU
         inputs = data[0].to(device=device, non_blocking=True)
         label = data[1].squeeze(-1).to(device=device, non_blocking=True)
   
         # use mixed precision to take advantage of bfloat16 support
         with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
             outputs = model(inputs)
             loss = criterion(outputs, label)
         optimizer.zero_grad(set_to_none=True)
         loss.backward()
         optimizer.step()
         
         # capture step time
         batch_time = time.perf_counter() - t0
         if step > 10:  # skip first steps
             summ += batch_time
             count += 1
         t0 = time.perf_counter()
         if step > 50:
             break
     print(f'average step time: {summ/count}')
 
 
 if __name__ == '__main__':
     mp.spawn(mp_fn,
              args=(),
              nprocs=torch.cuda.device_count(),
              join=True)

Transformer Engine

PyTorch(版本2.1)不包括FP8的数据类型。所以我们需要通过第三方的库Transformer Engine (TE),这是一个用于在NVIDIA gpu上加速Transformer模型的专用库。

使用FP8要比16float16和bfloat16复杂得多。这里我们不用关心细节,因为TE都已经帮我们实现了,我们只要拿来用就可以了。

但是需要对我们上面的模型进行一些简单的修改,需要将transformer变为TE的专用transformer层

 import transformer_engine.pytorch as te
 from transformer_engine.common import recipe
 
 
 class TE_Block(te.transformer.TransformerLayer):
     def __init__(
             self,
             dim,
             num_heads,
             mlp_ratio=4.,
             qkv_bias=False,
             qk_norm=False,
             proj_drop=0.,
             attn_drop=0.,
             init_values=None,
             drop_path=0.,
             act_layer=None,
             norm_layer=None,
             mlp_layer=None
     ):
         super().__init__(
             hidden_size=dim,
             ffn_hidden_size=int(dim * mlp_ratio),
             num_attention_heads=num_heads,
             hidden_dropout=proj_drop,
             attention_dropout=attn_drop
             )

然后修改VisionTransformer初始化使用自定义层:

   model = VisionTransformer(
       embed_dim=1280,
       depth=32,
       num_heads=16,
       block_fn=TE_Block
       ).cuda(device)

最后一个修改是用te包裹模型前向传递。Fp8_autocast上下文管理器。此更改需要支持FP8的GPU:

 with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
     with te.fp8_autocast(enabled=True):
         outputs = model(inputs)
     loss = criterion(outputs, label)

下面我们就可以测试结果:

可以看到,使用TE块提高了p4d(19%)和p5(32%)的性价比。使用FP8可将p5上的性能额外提高约20%。在TE和FP8优化之后,基于h100的p5.48large的性价比优于基于a100的p4d.24large 。并且训练速度提高了3倍。

Pytorch的原生FP8

在2.2版本后,pytorch原生FP8支持已经是“有限支持”了,所以我们可以先学习一下如何使用了。

 import torch
 from tabulate import tabulate
 
 f32_type = torch.float32
 bf16_type = torch.bfloat16
 e4m3_type = torch.float8_e4m3fn
 e5m2_type = torch.float8_e5m2
 
 # collect finfo for each type
 table = []
 for dtype in [f32_type, bf16_type, e4m3_type, e5m2_type]:
     numbits = 32 if dtype == f32_type else 16 if dtype == bf16_type else 8
     info = torch.finfo(dtype)
     table.append([info.dtype, numbits, info.max, 
                   info.min, info.smallest_normal, info.eps])
 
 headers = ['data type', 'bits', 'max', 'min', 'smallest normal', 'eps']
 print(tabulate(table, headers=headers))
 
 '''
 Output:
 
 data type      bits          max           min  smallest normal          eps
 -------------  ----  -----------  ------------  ---------------  -----------
 float32          32  3.40282e+38  -3.40282e+38      1.17549e-38  1.19209e-07
 bfloat16         16  3.38953e+38  -3.38953e+38      1.17549e-38    0.0078125
 float8_e4m3fn     8          448          -448         0.015625        0.125
 float8_e5m2       8        57344        -57344      6.10352e-05         0.25
 '''

我们可以通过在张量初始化函数中指定dtype来创建FP8张量,如下所示:

 device="cuda"
 e4m3 = torch.tensor(1., device=device, dtype=e4m3_type)
 e5m2 = torch.tensor(1., device=device, dtype=e5m2_type)

也可以强制转换为FP8。在下面的代码中,我们生成一个随机的浮点张量,并比较将它们转换为四种不同的浮点类型的结果:

 x = torch.randn(2, 2, device=device, dtype=f32_type)
 x_bf16 = x.to(bf16_type)
 x_e4m3 = x.to(e4m3_type)
 x_e5m2 = x.to(e5m2_type)
 
 print(tabulate([[‘float32’, *x.cpu().flatten().tolist()],
                 [‘bfloat16’, *x_bf16.cpu().flatten().tolist()],
                 [‘float8_e4m3fn’, *x_e4m3.cpu().flatten().tolist()],
                 [‘float8_e5m2’, *x_e5m2.cpu().flatten().tolist()]],
                headers=[‘data type’, ‘x1’, ‘x2’, ‘x3’, ‘x4’]))
 
 '''
 The sample output demonstrates the dynamic range of the different types:
 
 data type                  x1              x2              x3              x4
 -------------  --------------  --------------  --------------  --------------
 float32        2.073093891143  -0.78251332044  -0.47084918620  -1.32557279110
 bfloat16       2.078125        -0.78125        -0.4707031      -1.328125
 float8_e4m3fn  2.0             -0.8125         -0.46875        -1.375
 float8_e5m2    2.0             -0.75           -0.5            -1.25
 -------------  --------------  --------------  --------------  --------------
 '''

虽然创建FP8张量很容易,但FP8张量上执行一些基本的算术运算是不支持的。并且需要特定的函数,比如torch._scaled_mm来进行矩阵乘法。

 output, output_amax = torch._scaled_mm(
         torch.randn(16,16, device=device).to(e4m3_type),
         torch.randn(16,16, device=device).to(e4m3_type).t(),
         bias=torch.randn(16, device=device).to(bf16_type),
         out_dtype=e4m3_type,
         scale_a=torch.tensor(1.0, device=device),
         scale_b=torch.tensor(1.0, device=device)
     )

那么如何进行模型的训练呢,我们来做一个演示

 import torch
 from timm.models.vision_transformer import VisionTransformer
 from torch.utils.data import Dataset, DataLoader
 import os
 import time
 
 #float8 imports
 from float8_experimental import config
 from float8_experimental.float8_linear import Float8Linear
 from float8_experimental.float8_linear_utils import (
     swap_linear_with_float8_linear,
     sync_float8_amax_and_scale_history
 )
 
 #float8 configuration (see documentation)
 config.enable_amax_init = False
 config.enable_pre_and_post_forward = False
 
 # model configuration controls:
 fp8_type = True # toggle to change floating-point precision
 compile_model = True # toggle to enable model compilation
 batch_size = 32 if fp8_type else 16 # control batch size
 
 device = torch.device('cuda')
 
 # use random data
 class FakeDataset(Dataset):
     def __len__(self):
         return 1000000
     def __getitem__(self, index):
         rand_image = torch.randn([3, 256, 256], dtype=torch.float32)
         label = torch.tensor(data=[index % 1024], dtype=torch.int64)
         return rand_image, label
 
 # get data loader
 def get_data(batch_size):
     ds = FakeDataset()
     return DataLoader(
            ds,
            batch_size=batch_size, 
            num_workers=os.cpu_count(),
            pin_memory=True
          )
 
 # define the timm model
 def get_model():
     model = VisionTransformer(
         class_token=False,
         global_pool="avg",
         img_size=256,
         embed_dim=1280,
         num_classes=1024,
         depth=32,
         num_heads=16
     )
     if fp8_type:
         swap_linear_with_float8_linear(model, Float8Linear)
     return model
 
 # define the training step
 def train_step(inputs, label, model, optimizer, criterion):
     with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
         outputs = model(inputs)
         loss = criterion(outputs, label)
     optimizer.zero_grad(set_to_none=True)
     loss.backward()
     if fp8_type:
         sync_float8_amax_and_scale_history(model)
     optimizer.step()
 
 
 model = get_model()
 optimizer = torch.optim.Adam(model.parameters())
 criterion = torch.nn.CrossEntropyLoss()
 train_loader = get_data(batch_size)
 
 # copy the model to the GPU
 model = model.to(device)
 if compile_model:
     # compile model
     model = torch.compile(model)
 model.train()
 
 t0 = time.perf_counter()
 summ = 0
 count = 0
 
 for step, data in enumerate(train_loader):
     # copy data to GPU
     inputs = data[0].to(device=device, non_blocking=True)
     label = data[1].squeeze(-1).to(device=device, non_blocking=True)
 
     # train step
     train_step(inputs, label, model, optimizer, criterion)
 
     # capture step time
     batch_time = time.perf_counter() - t0
     if step > 10:  # skip first steps
         summ += batch_time
         count += 1
     t0 = time.perf_counter()
     if step > 50:
         break
 
 print(f'average step time: {summ / count}')

这里需要特定的转换函数,将一些操作转换为支持FP8的版本,需要说明的是,因为还在试验阶段所以可能不稳定

FP8线性层的使用使我们的模型的性能比我们的基线实验提高了47%(!!)

对比TE

未编译的TE FP8模型的性能明显优于我们以前的FP8模型,但编译后的PyTorch FP8模型提供了最好的结果。因为TE FP8模块不支持模型编译。所以使用torch.compile会导致“部分编译”,即它在每次使用FP8时将计算分拆为多个图。

总结

在这篇文章中,我们演示了如何编写PyTorch训练脚本来使用8位浮点类型。TE是一个非常好的库,因为它可以让我们的代码修改量最小,而PyTorch原生FP8支持虽然需要修改代码,并且还是在试验阶段(最新的2.3还是在试验阶段),可能会产生问题,但是这会让训练速度更快。

不过总的来说FP8的确可以加快我们的训练速度,提高GPU的使用效率。这里要提一句TE是由NVIDIA开发的,并对其gpu进行了大量定制,所以如果是N卡的话可以直接用TE
https://avoid.overfit.cn/post/0dd1fba546674b48b932260fa8742971

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/643133.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

primeflex样式库笔记 Display相关的案例

回顾 宽度设置的基本总结 w-full:表示widtdh:100%;占满父容器的宽度。 w-screen:表示占满整个屏幕的宽度。 w-1到w-12,是按百分比划分宽度,数字越大,占据的比例就越大。 w-1rem到w-30rem&…

欧拉函数、快速幂、扩展欧几里得算法、中国剩余定理和高斯消元

欧拉函数 给定 n 个正整数 ai,请你求出每个数的欧拉函数。 欧拉函数的定义1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。 若在算数基本定理中,Np1a11p2a2…pmm,则:ϕ(N) Np1−1/p1p2−1/p2…pm−1/pm 输…

WPF之打印与预览

目录 1,打印设置与管理。 1.1,引入程序集: 1.2,主要管理类介绍: 1.3,应用: 1.4,效果。 1.5,Demo链接。 2,打印。 2.1,主要参与打印的类与…

Mac JDK和SDK环境变量配置

一、Java JDK配置 1.下载并安装Java jdk1.8及以上,这个可以在网上自行搜索下载,这里不在详细描述 2.如果不知道JAVA_HOME的安装路径,可以输入命令查看:/usr/libexec/java_home -V ,如图 3.在终端输入命令&#xff1…

uniapp微信小程序解决open-type获取用户头像,返回临时路径问题!

解决 open-type 为 chooseAvatar,返回临时路径问题 文章目录 解决 open-type 为 chooseAvatar,返回临时路径问题效果图Demo获取头像回调数据结构效果图解决方式上传到服务器转base64 基于微信小程序获取头像昵称规则调整后,当小程序需要让用户…

CS 下载安装详解

目录 CS简介: CS下载地址: CS的安装: CS简介: CS为目前渗透中常用的一款工具,它的强大在于控制windows木马,CS主要控制windows木马。 CS下载地址: 链接:https://pan.baidu.com/…

华为OD机试【找出通过车辆最多颜色】(java)(100分)

1、题目描述 在一个狭小的路口,每秒只能通过一辆车,假设车辆的颜色只有 3 种,找出 N 秒内经过的最多颜色的车辆数量。 三种颜色编号为0 ,1 ,2。 2、输入描述 第一行输入的是通过的车辆颜色信息[0,1,1,2] &#xff0…

huggingface笔记: accelerate estimate-memory 命令

探索可用于某一机器的潜在模型时,了解模型的大小以及它是否适合当前显卡的内存是一个非常复杂的问题。为了缓解这个问题,Accelerate 提供了一个 命令行命令 accelerate estimate-memory。 accelerate estimate-memory {MODEL_NAME} --library_name {LIBR…

AIGC-风格迁移-style Injection in Diffusion-CVPR2024HighLight-论文精度

Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer-CVPR2024HighLight 代码:https://github.com/jiwoogit/StyleID 论文:https://jiwoogit.github.io/StyleID_site/ 为了解决风格迁…

Oracle的安装以及一些相关问题

系列文章目录 Oracle的安装以及一些相关问题 文章目录 系列文章目录前言一、Oracle的安装二、常用命令三、误删dbf四、PLSQL乱码五、oracle更换数据库字符集总结 前言 一段时间没更新,主要最近一直在找工作,最终还是顺着春招找到工作了,现在…

使用nvm管理nodejs多个版本

在工作中,可能会遇到同时使用vue2和vue3开发项目,但他们的nodejs版本又不同,给你带来了困扰,不知道怎么办?这时就可以使用nvm管理多个nodejs版本 第一步:先去github上面下载nvm 这是下载地址:…

大语言模型的工程技巧(四)——梯度检查点

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型:从线性回归到通用人工智能》,欢迎有兴趣的读者多多支持。 本文将讨论如何利用梯度检查点算法来减少模型在训练时候(更准确地说是运行反向传播算法时)的内存开支。…

C++_string简单源码剖析:模拟实现string

文章目录 🚀1.构造与析构函数🚀2.迭代器🚀3.获取🚀 4.内存修改🚀5. 插入🚀6. 删除🚀7. 查找🚀8. 交换swap🚀9. 截取substr🚀10. 比较符号重载🚀11…

【IC设计】牛客网-序列检测习题总结

文章目录 状态机基础知识VL25 输入序列连续的序列检测VL26 含有无关项的序列检测VL27 不重叠序列检测VL28 输入序列不连续的序列检测参考资料 状态机基础知识 VL25 输入序列连续的序列检测 timescale 1ns/1ns module sequence_detect(input clk,input rst_n,input a,output re…

vue三级联动组件

背景 项目中经常出现三级下拉框组件的要求,这种组件其中一级发生变化,子级的组件就会发生变化如果这一个组件,单独作为搜索条件使用,很好写,同时作为搜索条件和form回写组件,回显就比较困难 子组件代码 将与…

一分钟带你创建百万测试数据,玩转软件测试

准备测试数据是软件测试中非常重要的一个环节,无论是手工测试、动化测试还是性能测试,生成大量测试数据以评估性能是一项重要任务。 然而,寻找合适的测试数据并确保其质量常常是一项繁琐且耗时的工作。 先来看一下准备测试数据常见的四类方法…

vue 区分多环境打包

需求:区分不同的环境(测试、正式环境),接口文档地址不同; 配置步骤: 1、在根目录下面新建 .env.xxx 文件(xxx 根据环境不同配置) 文件中一定要配置的参数项为:NODE_ENV…

北邮22级信通院DSP:用C++程序实现给定参数下四种滤波器的Butterworth模拟滤波器设计:给定上下截频和衰减系数求H(p)和H(s)

北邮22信通一枚~ 跟随课程进度更新北邮信通院DSP的笔记、代码和文章,欢迎关注~ 获取更多文章,请访问专栏: 北邮22级信通院DSP_青山入墨雨如画的博客-CSDN博客 目录 一、 核心算法 1.1判断滤波器类型 1.2 带通滤波器BP 1.3带阻滤波器B…

634 · 单词矩阵

链接&#xff1a;LintCode 炼码 - ChatGPT&#xff01;更高效的学习体验&#xff01; . - 力扣&#xff08;LeetCode&#xff09; 题解&#xff1a; class Solution { public: struct Trie {Trie() {next.resize(26, nullptr);end false;} std::vector<Trie*> next; b…

信息系统项目管理师十大管理计划内容概览

目录 1.项目章程2.项目管理计划3.范围管理计划4.需求管理计划5.进度管理计划6.成本管理计划7.质量管理计划8.资源管理计划9.沟通管理计划10.风险管理计划11.采购管理计划12.干系人参与计划 点我去AIGIS公众号查看本文 1.项目章程 项目目标成功标准退出标准关键干系人名单发起人…