路径总和Ⅲ
这题和和《为K的数组》思路一致,也是用前缀表。
代码调试过,所以还加一部分用前序遍历数组和中序遍历数组构造二叉树的代码。
#include<vector>
#include<unordered_map>
#include<iostream>
using namespace std;
//Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class Solution {
private:
unordered_map<long long, int>map;
int dfs(TreeNode* root, long long cur, int targetSum)
{
if (root == NULL)
{
return 0;
}
int count = 0;
cur += root->val;
if (map.find(cur - targetSum) != map.end())
{
count += map[cur - targetSum];
}
map[cur]++;
int leftcount = dfs(root->left, cur, targetSum);
int rightcount = dfs(root->right, cur, targetSum);
map[cur]--;//因为路径总和只是针对同一个头结点,所以不是同一个头结点时需要回溯
return count + leftcount + rightcount;
}
public:
int pathSum(TreeNode* root, int targetSum) {
map[0] = 1;
return dfs(root, 0, targetSum);
}
};
class tree {
private:
TreeNode* build(vector<int>& preorder, vector<int>& inorder)
{
if (preorder.size() == 0)
return NULL;
//找到根节点
int rootvalue = preorder[0];
TreeNode* root = new TreeNode(rootvalue);
//叶子节点
if (preorder.size() == 1)
return root;
//区分左右子树位置
int index = 0;
for (int i = 0; i < inorder.size(); i++)
{
if (inorder[i] == rootvalue)
{
index = i;
break;
}
}
vector<int>left_in(inorder.begin(), inorder.begin() + index);
vector<int>right_in(inorder.begin() + index + 1, inorder.end());
vector<int>left_pre(preorder.begin() + 1, preorder.begin() + 1 + left_in.size());
vector<int>right_pre(preorder.begin() + 1 + left_in.size(), preorder.end());
root->left = build(left_pre, left_in);
root->right = build(right_pre, right_in);
return root;
}
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
return build(preorder, inorder);
}
};
int main()
{
vector<int>inorder = {3,3,-2,5,2,1,10,-3,11};
vector<int>preorder = { 10,5,3,3,-2,2,1,-3,11 };
int targetsum = 8;
tree mytree;
TreeNode* root = mytree.buildTree(preorder,inorder);
Solution solution;
int result = solution.pathSum(root, targetsum);
cout << result << endl;
}