白鹭群优化算法,原理详解,MATLAB代码免费获取

白鹭群优化算法(Egret Swarm Optimization Algorithm,ESOA)是一种受自然启发的群智能优化算法。该算法从白鹭和白鹭的捕食行为出发,由三个主要部分组成:坐等策略、主动策略和判别条件。将ESOA算法与粒子群算法(PSO)、遗传算法(GA)、差分进化算法(DE)、等算法在36个基准函数和3个工程问题上的性能进行了比较。结果证明了该方法的有效性和鲁棒性。

abe9ca934043c3686efc758ff71f3d57.png

该成果于2022年发表在计算机领域三区期刊Biomimetics上,目前在谷歌学术上被引率39次。

a452786683336efd83dd40aba63759a9.png

大多数白鹭栖息在沿海岛屿、海岸、河口和河流,以及靠近海岸的湖泊、池塘、溪流、稻田和沼泽。白鹭通常是成对的,或者是成群的。由于飞行时能量消耗很大,决定捕食通常需要彻底检查飞行轨迹,以确保通过食物的位置获得的能量比飞行中消耗的能量要多。总体而言,采用积极搜索策略的大白鹭会平衡高能量消耗以获得更大的潜在回报,而采用坐等策略的雪白鹭则会平衡低能量消耗以获得更小但更可靠的利润。

1、算法原理

(1)数学模型与算法

ESOA受白鹭的守株待兔策略和大白鹭的攻击策略的启发,结合了这两种策略的优点,构建了相应的数学模型来量化行为。如图所示,ESOA是一个并行算法,有三个基本组成部分:坐等策略,积极策略和判别条件。一个白鹭小队中有三只白鹭,白鹭A采用引导前进机制,白鹭B和白鹭C分别采用随机行走和包围机制。每一部分的细节如下。

c60d84e8ccf5c87fe6a9727a20c4cfb6.jpeg

Egret Squad的各个角色和搜索首选项如图所示。白鹭A将估计下降平面并基于平面参数的梯度进行搜索,白鹭B执行全局随机漫游,白鹭C基于更好的白鹭的位置选择性地进行探索。通过这种方式,ESOA在开发和勘探方面将更加平衡,并能够快速搜索可行的解决方案。与梯度下降不同,ESOA在梯度估计中引用了历史信息和随机性,这意味着它不太可能落入优化问题的鞍点。ESOA也不同于其他的元启发式算法,通过估计优化问题的切平面,使快速下降到当前的最优点。

73e01b1a088a3d5986675413cda4fb6f.png

(2)坐等策略

观测方程:假设第i个白鹭小队的位置为Xi ∈ Rn,n为问题的维数,A(n)为白鹭对当前位置可能存在的猎物的估计方法。是对当前位置猎物的估计,

则估计方法可以被参数化为,

其中wi ∈ Rn是估计方法的权重。误差ei可以描述为,

同时,ω i的实际梯度ω gi ∈ Rn可以通过对误差方程(3)的wi进行偏导数来恢复,其方向为d ω i。

下图展示了白鹭的跟随行为,其中白鹭在捕食过程中参考了更好的白鹭,借鉴了它们估计猎物行为的经验并融入了自己的想法。dh,i ∈ Rn是小队最佳位置的方向修正,而dg,i ∈ Rn是所有小队最佳位置的方向修正。

3ad63a2dceaa633ed27a7892aad1bcc4.png

积分梯度gi ∈ Rn可以表示如下,并且rh ∈ [0,0.5),rg ∈ [0,0.5):

这里应用自适应权重更新方法[76],β1为0.9,β2为0.99:

根据白鹭A对当前情况的判断,下一个采样位置xa,i可以描述为,

其中t和tmax是当前迭代时间和最大迭代时间,而hop是解空间的下界和上界之间的差距。stepa ∈(0,1]是白鹭A的步长因子。ya,i是xa,i的适合度。

(3)积极的战略

白鹭B倾向于随机搜索猎物,其行为可描述如下,

其中rb,i是(− π/2,π/2)中的随机数,xb,i是白鹭B的预期下一个位置,yb,i是适应度。

白鹭C喜欢攻击性地追逐猎物,因此使用包围机制作为其位置的更新方法:

(4)判别条件

在白鹭小队的每个成员都决定了自己的计划后,小队会选择最佳方案并一起采取行动。xs,i是第i个白鹭小队的解矩阵:

29695d6a1480f94be1b97e3a4e2776ce.png

如果最小值ys,i优于当前适应度yi,则白鹭队接受该选择。或者随机数r∈(0,1)小于0.3,这意味着有30%的可能性接受更差的方案。

ESOA对应的算法的伪代码如下所示。

bb977bd812c0a14b55380f1a24a73644.png

2、结果展示

20093d1982a7b239205277a12036e34a.png

da91a4a8f51b37c484167fd57b5b5ecf.png

87b35e8d8606dfcae8cbba7ab6bddfc9.png

3、MATLAB核心代码

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [y_global_best, x_global_best, Convergence_curve]=ESOA(SearchAgents_no, Max_iter, lb, ub, dim, fobj)
func = fobj;
beta1 = 0.9;
beta2 = 0.99;
x=initialization(SearchAgents_no, dim, ub, lb);
Convergence_curve=zeros(1,Max_iter);
w = random('Uniform', -1, 1, SearchAgents_no, dim);
%g = random('Uniform', -1, 1, SearchAgents_no, dim);
m = zeros(SearchAgents_no, dim);
v = zeros(SearchAgents_no, dim);
y = zeros(SearchAgents_no,1);
for i=1:SearchAgents_no
    y(i) = func(x(i,:));
end
p_y = y;
x_hist_best = x;
g_hist_best = x;
y_hist_best = ones(SearchAgents_no)*inf;
x_global_best = x(1, :);
g_global_best = zeros(1, dim);
y_global_best = func(x_global_best);
hop = ub - lb;
l=0;% Loop counter
% Main loop
while l<Max_iter
    for i=1:SearchAgents_no
        p_y(i) = sum(w(i, :) .* x(i, :));
        p = p_y(i) - y(i);
        g_temp = p.*x(i, :);
        % Indivual Direction
        p_d = x_hist_best(i, :) - x(i, :);
        f_p_bias = y_hist_best(i) - y(i);
        p_d = p_d .* f_p_bias;
        p_d = p_d ./ ((sum(p_d)+eps).*(sum(p_d)+eps));
        d_p = p_d + g_hist_best(i, :);
        % Group Direction
        c_d = x_global_best - x(i, :);
        f_c_bias = y_global_best - y(i);
        c_d = c_d .* f_c_bias;
        c_d = c_d ./ ((sum(c_d)+eps).*(sum(c_d)+eps));
        d_g = c_d + g_global_best;
        % Gradient Estimation
        r1 = rand(1, dim);
        r2 = rand(1, dim);
        g = (1 - r1 - r2).*g_temp + r1 .* d_p + r2 .* d_g;
        g = g ./ (sum(g) + eps);
        m(i,:) = beta1.*m(i,:)+(1-beta1).*g;
        v(i,:) = beta2*v(i,:)+(1-beta2)*g.^2;
        w(i,:) = w(i,:) - m(i,:)/(sqrt(v(i,:))+eps);
        % Advice Forward
        x_o = x(i, :) + exp(-l/(0.1*Max_iter)) * 0.1 .* hop .* g;
        Flag4ub=x_o>ub;
        Flag4lb=x_o<lb;
        x_o = (x_o.*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        y_o = func(x_o);
        % Random Search
        r = random('Uniform', -pi/2, pi/2, 1, dim);
        x_n = x(i, :) + tan(r) .* hop/(1 + l) * 0.5;
        Flag4ub=x_n>ub;
        Flag4lb=x_n<lb;
        x_n = (x_n.*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        y_n = func(x_n);
        % Encircling Mechanism
        d = x_hist_best(i, :) - x(i, :);
        d_g = x_global_best - x(i, :);
        r1 = rand(1, dim);
        r2 = rand(1, dim);
        x_m = (1-r1-r2).*x(i, :) + r1.*d + r2.*d_g;
        Flag4ub=x_m>ub;
        Flag4lb=x_m<lb;
        x_m = (x_m.*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        y_m = func(x_m);
        % Discriminant Condition
        x_summary = [x_m; x_n; x_o];
        y_summary = [y_m, y_n, y_o];
        y_summary(isnan(y_summary)) = inf;
        ind = y_summary==min(y_summary);
        y_i = min(y_summary);
        x_i = x_summary(ind, :);
        x_i = x_i(1, :);
        if y_i < y(i)
            y(i) = y_i;
            x(i, :) = x_i;
            if y_i < y_hist_best(i)
                y_hist_best(i) = y_i;
                x_hist_best(i, :) = x_i;
                g_hist_best(i, :) = g_temp;
                if y_i < y_global_best
                    y_global_best = y_i;
                    x_global_best = x_i;
                    g_global_best = g_temp;
                end
            end
        else
            if rand()<0.3
                y(i) = y_i;
                x(i, :) = x_i;
            end
        end
    end    
l=l+1;    
fprintf("%d, %f\n", l, y_global_best)
Convergence_curve(l) = y_global_best;
end
end

参考文献

[1]Chen Z, Francis A, Li S, et al. Egret swarm optimization algorithm: an evolutionary computation approach for model free optimization[J]. Biomimetics, 2022, 7(4): 144.

完整代码获取

后台回复关键词:

TGDM833

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/641556.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

提取COCO 数据集的部分类

1.python提取COCO数据集中特定的类 安装pycocotools github地址&#xff1a;https://github.com/philferriere/cocoapi pip install githttps://github.com/philferriere/cocoapi.git#subdirectoryPythonAPI若报错&#xff0c;pip install githttps://github.com/philferriere…

docker-如何将容器外的脚本放入容器内,将容器内的脚本放入容器外

文章目录 前言docker-如何将容器外的脚本放入容器内&#xff0c;将容器内的脚本放入容器外、1. docker 如何将容器外的脚本放入容器内1.1. 验证 2. 将容器内的脚本放入容器外 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&…

【AI绘画Stable Diffusion】单人LoRA模型训练,打造你的专属模型,新手入门宝典请收藏!

大家好&#xff0c;我是灵魂画师向阳 本期我将教大家如何进行LoRA模型训练&#xff0c;打造你的专属模型&#xff0c;内容比较干&#xff0c;还请耐心看完&#xff01; 随着AIGC的发展&#xff0c;许多传统工作岗位正逐渐被AI取代。同时&#xff0c;AI变革也在创造前所未有的…

机器学习知识与心得

目录 机器学习实践 机器学习基础理论和概念 机器学习基本方法 1.线性回归&#xff08;回归算法&#xff09; 训练集&#xff08;Training Set&#xff09; 测试集&#xff08;Test Set&#xff09; 交叉验证 正则化 特点 2.logistic回归&#xff08;分类算法&#xf…

智慧环保一体化平台哪家好?(已解答)

在环保行业数字化转型的大潮中&#xff0c;朗观视觉智慧环保一体化平台应运而生&#xff0c;成为推动环境治理现代化的重要手段。选择一个合适的智慧环保一体化平台对于提升环境管理效率、实现精细化监管具有重要意义。本文将从多个维度为您提供一份深度分析与选择指南&#xf…

Python使用virtualenv创建虚拟环境

目录 第一步&#xff1a;安装virtualenv 第二步&#xff1a;选择一个文件夹用来放所创建的虚拟环境 第三步&#xff1a;创建虚拟环境 第四步&#xff1a;激活虚拟环境 第五步&#xff1a;退出虚拟环境 第六步&#xff1a;测试安装django 前提&#xff1a;你得有个python环…

学习通高分免费刷课实操教程

文章目录 概要整体架构流程详细步骤云上全平台登录步骤小结 概要 我之前提到过一个通过浏览器的三个脚本就可以免费高分刷课的文章&#xff0c;由于不方便拍视频进行实操演示&#xff0c;然后写下了这个实操教程&#xff0c;之前的三个脚本划到文章末尾 整体架构流程 整体大…

windows安装rocketmq遇到的问题

运行mqnamesrv.cmd闪退问题。 首先检查是否安装java环境 cdm运行java -version 然后确定环境变量是否配置正确 如果这些地方都没问题那就比较麻烦了&#xff0c;可能是jdk版本&#xff08;小版本&#xff09;与rocketmq不匹配。 小编用的版本&#xff1a; jdk是openjdk 1.8…

DOS学习-目录与文件应用操作经典案例-type

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一.前言 二.使用 三.案例 1. 查看文本文件内容 2. 同时查看多个文本文件内容 3. 合并文…

mysql驱动版本变更导致查询数据结果一直是空

1 引言 最近接手了一个已离职同事的java项目&#xff0c;这个项目中原来使用了自己的mysql驱动版本&#xff0c;并未使用公司公共依赖中的版本号。我想为了统一版本号&#xff0c;就将当前项目中pom文件中mysql的版本号verson给去除了。没怎么自测&#xff0c;就直接发到测试环…

【网络】为什么udp协议报头有长度字段,而tcp没有

引言&#xff1a; 在网络通信中&#xff0c;UDP&#xff08;用户数据报协议&#xff09;和TCP&#xff08;传输控制协议&#xff09;是两种常用的传输层协议。它们在设计和功能上有一些不同之处&#xff0c;其中之一就是报头中的长度字段。本文将深入探讨UDP和TCP协议中长度字…

解释JAVA语言中关于方法的重载

在JAVA语言中&#xff0c;方法的重载指的是在同一个类中可以存在多个同名方法&#xff0c;但它们的参数列表不同。具体来说&#xff0c;重载的方法必须满足以下至少一条条件: 1. 参数个数不同。 2. 参数类型不同。 3. 参数顺序不同。 当调用一个重载方法时&#xff0c;编译器…

2024 电工杯(B题)数学建模完整思路+完整代码全解全析

你是否在寻找数学建模比赛的突破点&#xff1f;数学建模进阶思路&#xff01; 作为经验丰富的数学建模团队&#xff0c;我们将为你带来2024电工杯数学建模竞赛&#xff08;B题&#xff09;的全面解析。这个解决方案包不仅包括完整的代码实现&#xff0c;还有详尽的建模过程和解…

用队列实现栈,用栈实现队列

有两个地方会讨论到栈&#xff0c;一个是程序运行的栈空间&#xff0c;一个是数据结构中的栈&#xff0c;本文中讨论的是后者。 栈是一个先入后出&#xff0c;后入先出的数据结构&#xff0c;只能操作栈顶。栈有两个操作&#xff0c;push 和 pop&#xff0c;push 是向将数据压…

CentOS7 部署单机版 elasticsearch

一、环境准备 1、准备一台系统为CentOS7的服务器 [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core) 2、创建新用户&#xff0c;用于elasticsearch服务 # elastic不允许使用root账号启动服务 [rootlocalhost ~]# useradd elastic [rootlo…

【全开源】沃德商协会管理系统源码(FastAdmin+ThinkPHP+Uniapp)

一款基于FastAdminThinkPHPUniapp开发的商协会系统&#xff0c;新一代数字化商协会运营管理系统&#xff0c;以“智慧化会员体系、智敏化内容运营、智能化活动构建”三大板块为基点&#xff0c;实施功能全场景覆盖&#xff0c;一站式解决商协会需求壁垒&#xff0c;有效快速建立…

PostgreSQL事务基础理解

PostgreSQL事务 事务是数据库管理系统执行过程中的一个逻辑单位&#xff0c;由一个有限的数据库操作序列构成。数据库事务通常包含一个序列对数据库的读和写操作&#xff0c;主要是包含以下两个目的&#xff1a; 为数据库操作序列提供一个从失败中恢复到正常状态的方法&#…

1.Redis之初识Redis分布式系统

1.初识Redis 1.1 官网 Redis中文网 Redis 教程 | 菜鸟教程 (runoob.com) 1.2 解释 在内存中存储数据 定义变量,不就是在内存中存储数据嘛?? Redis 是在分布式系统&#xff08;进程的隔离性&#xff1a;Redis 就是基于网络&#xff0c;可以把自己内存中的变量给别的进程…

【Linux】简单模拟C语言文件标准库FILE

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前正在学习c和算法 ✈️专栏&#xff1a;Linux &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章有啥瑕疵&#xff0c;希望大佬指点一二 如果文章对…

Java进阶学习笔记10——子类构造器

子类构造器的特点&#xff1a; 子类的全部构造器&#xff0c;都会先调用父类的构造器&#xff0c;再执行自己。 子类会继承父类的数据&#xff0c;可能还会使用父类的数据。所以&#xff0c;子类初始化之前&#xff0c;一定先要完成父类数据的初始化&#xff0c;原因在于&…