每日AIGC最新进展(10):符号音乐生成SYMPLEX、新型图像编辑数据集ReasonPix2Pix、角色一致性插画生成、高级的风格个性化扩散模型

Diffusion Models专栏文章汇总:入门与实战

SYMPLEX: Controllable Symbolic Music Generation using Simplex Diffusion with Vocabulary Priors

http://arxiv.org/abs/2405.12666v1 

本文介绍了一种新的符号音乐生成方法,名为SYMPLEX,它基于单纯形扩散(Simplex Diffusion,SD)模型,通过操作概率分布而非信号空间来生成音乐。该方法利用词汇表先验(vocabulary priors)来控制音乐的生成过程,允许在不进行任务特定模型调整或应用外部控制的情况下,对时间和音高进行填充、选择乐器等。

SYMPLEX模型采用SSD-LM作为基础,SSD-LM是一种基于窗口的单纯形扩散模型,用于生成任意长度的自然语言序列。与SSD-LM处理序列不同,SYMPLEX操作的是一组包含9个属性的音符事件集合。模型通过训练神经网络从噪声概率中恢复数据样本,并在生成新样本时,从随机初始化的概率开始,逐步迭代细化。此外,通过将词汇表先验与当前概率相乘并重新归一化,可以在不依赖外部模型的情况下控制生成过程。

作者从MetaMIDI数据集中提取了4小节多乐器MIDI循环,并构建了一个包含约25万个循环的数据集。他们使用了一种无序集合表示法来表示MIDI循环,每个音符事件包含9个属性。实验中,SYMPLEX在多个任务上进行了演示,包括无条件生成、有条件生成以及多种编辑任务。作者还讨论了未来工作,包括如何避免根据不同生成场景调整参数设置,以简化工作流程。

ReasonPix2Pix: Instruction Reasoning Dataset for Advanced Image Editing

http://arxiv.org/abs/2405.11190v1

本文介绍了一个名为ReasonPix2Pix的新型图像编辑数据集,旨在提升生成模型在遵循人类指令进行图像编辑时的推理能力。现有的图像编辑模型通常只能理解明确具体的指令,但在处理隐含或定义不明确的指令时表现出推理能力的不足。为了解决这一问题,研究者们创建了ReasonPix2Pix,这是一个包含推理指令、更真实图像和输入与编辑图像之间更大变化的数据集

ReasonPix2Pix数据集通过三个部分来增强模型的推理能力:第一部分利用InstructPix2Pix数据集中的图像对,生成推理指令;第二部分和第三部分则通过生成新的编辑图像和指令来提升模型对现实图像的编辑能力。研究者们还结合了多模态大型语言模型(MLLM)和扩散模型来构建一个简单的框架,该框架能够理解指令的明确或隐含意图,并生成符合指令的输出图像。

在实验部分,研究者们使用了GPT-3.5-turbo生成数据集,并采用了Stable Diffusion v1.5和LLaVA-7Bv1.5进行微调。他们将图像大小调整为256×256,并在训练期间使用了基础学习率。通过定性和定量的实验结果,证明了ReasonPix2Pix在不需要推理和需要推理的指令编辑任务中均展现出优越的性能。用户研究也表明,当指令变得更加隐含时,ReasonPix2Pix与先前方法相比具有更大的优势。最后,研究者们讨论了数据集的局限性,并指出了数据集规模因API成本而受限,但提供了清晰的数据生成流程,以便研究人员可以扩展数据集规模。

Evolving Storytelling: Benchmarks and Methods for New Character Customization with Diffusion Models

http://arxiv.org/abs/2405.11852v1

本文探讨了如何将新角色有效地融入现有叙事中,并保持角色一致性的问题,特别是在数据有限的情况下。作者指出,现有的故事可视化生成模型在整合新角色时存在两大限制缺乏合适的基准测试和新旧角色区分的挑战。为了解决这些问题,作者提出了"NewEpisode"基准测试,包含经过改进的数据集,用于评估生成模型在仅使用单一示例故事生成新故事的能力

作者引入了"EpicEvo"方法,这是一种定制的扩散模型,用于视觉故事生成。"EpicEvo"通过一个新颖的对抗性角色对齐模块扩散过程中逐步对齐生成图像与新角色的示例图像,同时应用知识蒸馏来防止忘记角色和背景细节。这种方法使得模型能够学习如何生成包含现有角色和/或新角色的故事,并且通过对抗性角色对齐模块鼓励模型独特地生成角色,并通过从预训练模型中提取知识来保持模型先验。

为了验证"EpicEvo"的有效性,作者在"NewEpisode"基准测试上进行了定量和定性的研究。实验结果表明,"EpicEvo"在基准测试上的定量表现超过了现有的基线,并且通过质量研究确认了其在扩散模型中定制视觉故事生成的优越性。总结来说,"EpicEvo"提供了一种有效的方法,仅使用一个示例故事就能融入新角色,为诸如连载卡通等应用开辟了新的可能性。

TriLoRA: Integrating SVD for Advanced Style Personalization in Text-to-Image Generation

http://arxiv.org/abs/2405.11236v1

本文提出了一种名为TriLoRA的新方法,旨在改进文本到图像生成模型的微调过程,以实现更高级的风格个性化。现有的深度学习模型,如Stable Diffusion,在视觉艺术创作中应用广泛,但面临过拟合、生成结果不稳定和难以精确捕捉创造者所需特征等挑战。TriLoRA通过将奇异值分解(SVD)整合到低秩适应(LoRA)参数更新策略中,有效降低了过拟合风险,增强了模型输出的稳定性,并更准确地捕捉到创造者所需的微妙特征调整

TriLoRA是在LoRA框架内引入SVD的概念,通过训练两个适配器:一个标准低秩适配器(LoRA)和一个更小的适配器,这两个适配器相对于原始预训练权重并行训练。该方法的创新之处在于使用紧凑奇异值分解(Compact SVD)来确定创造者关注的特定特征数,从而提供更精确的选择空间。在TriLoRA框架中,通过将Compact SVD整合到LoRA中,优化了权重矩阵的更新,使得模型在保持较低参数数量的同时,提高了对新任务的适应性

为了评估TriLoRA和LoRA在特定风格或主题中的适应性,作者构建了两个数据集:一个包含多种幻想生物的Pokemon数据集,另一个是专注于特定风格服装的GAC数据集。实验采用了标准化Fréchet Inception距离(Normalized FID)和CLIP分数作为主要的定量评估指标,并辅以用户研究以提供定性见解。实验结果表明,TriLoRA在多个数据集上的表现优于LoRA,具有更好的模型泛化能力和创造性表达,同时保持了效率和资源限制下的优异性能。用户研究结果也支持了TriLoRA在文本视觉一致性和视觉吸引力方面的优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/641176.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

台湾省军事演习路径规划:A*算法在复杂地形中的应用

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣! 推荐:数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注 导航: LeetCode解锁100…

在MySQL中,Linux表同步到Windows,有大小写的就没同步的详细解决方案

在 Linux 系统上,文件名是区分大小写的,而在 Windows 系统上,文件名通常不区分大小写。导致在从 Linux 同步文件到 Windows 时,有些文件因为名称冲突而无法同步。为了有效解决这个问题,可以采取以下方法: …

1098: 堆的判断

解法&#xff1a; 堆是完全二叉树 用数组来存储 然后用定义判定 #include<iostream> #include<vector> using namespace std; int main() {int n;cin >> n;vector<int> vec(n);for (int i 0; i < n; i) cin >> vec[i];for (int i 0; i &…

【Linux】关于获取进程退出状态中的core dump标志补充

通过 wait/waitpid 可以获取子进程的退出状态, 从而判断其退出结果. 记录退出状态的 int 变量 status 的使用情况如下图所示: 如果是收到信号终止的话, 低 7 位为收到的终止信号, 而低第 8 位为 core dump 标志, core dump 标志有什么用呢? core dump 标志只存 0/1, 表示是否…

c#自动生成缺陷图像-添加新功能(可从xml直接提取目标数据,然后进行数据离线增强)--20240524

在进行深度学习时,数据集十分重要,尤其是负样本数据。 故设计该软件进行深度学习数据预处理,最大可能性获取较多的模拟工业现场负样本数据集。 该软件基于VS2015、.NETFrameWork4.7.2、OpenCvSharp1.0.0.0、netstandard2.0.0.0、SunnyUI3.2.9.0、SunnyUI.Common3.2.9.0及Ope…

ClickHouse实战处理(一):MergeTree表引擎

MergeTree作为家族系列最基础的表引擎&#xff0c;主要有以下特点&#xff1a; 存储的数据按照主键排序&#xff1a;创建稀疏索引加快数据查询速度。支持数据分区&#xff0c;可以通过PARTITION BY语句指定分区字段。支持数据副本。支持数据采样。 一、MergeTree分类和建表参…

python水果分类字典构建指南

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言 二、理解需求 三、构建字典 1. 数据结构选择 2. 代码实现 3. 结果展示 四、总…

C++实现基础二叉搜索树(并不是AVL和红黑树)

本次实现的二叉搜索树并不是AVL数和红黑树&#xff0c;只是了解流程和细节。 目录 二叉搜索树的概念K模型二叉搜索树的实现二叉搜索树的架构insert插入find 查找中序遍历Inorder删除earse替换法的思路情况一 &#xff1a;假如要删除节点左边是空的。在左边时在右边时 情况二&a…

JavaScript-数组的增删改查

数组的操作一共有四种&#xff1a; 查询数组数据修改数组中元素的值数组添加新的数据删除数组中的元素 数组的初始化 有些编程语言的数组初始化是用{}包着的&#xff0c;而JS的数组初始化用[] let num[2,6,1,77,52,25,7]; 数组的查询 想要具体查询数组中的某个元素 可以用数…

【Spring Cloud】全面解析服务容错中间件 Sentinel 持久化两种模式

文章目录 推送模式本地文件持久化&#xff08;拉模式&#xff09;配置yml编写处理类添加配置演示 配置中心持久化&#xff08;推模式&#xff09;修改nacos在sentinel中生效引入依赖配置文件 修改sentinel在nacos中生效下载源码更改代码演示 总结 推送模式 Sentinel 规则的推送…

【JavaEE 初阶(十)】JVM

❣博主主页: 33的博客❣ ▶️文章专栏分类:JavaEE◀️ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你了解更多进阶知识 目录 1.前言2.JVM内存区域划分3.类加载3.1双亲委派模型 4.垃圾回收&#xff08;GC&#xff0…

结构体变量的创建和初始化以及内存对齐

前言 嗨&#xff0c;我是firdawn&#xff0c;在本章中我们将介绍&#xff0c;结构体变量的创建和初始化&#xff0c;结构成员访问操作符以及结构体的内存对齐&#xff0c;下面是本章的思维导图&#xff0c;接下来&#xff0c;让我们开始今天的学习吧&#xff01; 一&#xf…

下载CentOS系统或者下载Ubuntu系统去哪下?

因为Centos官网是挂在国外的服务器上&#xff0c;下载镜像时相比于国内的下载速度会慢很多&#xff0c;分享国内的镜像站去阿里巴巴下载Centos镜像。 首先分享两种下载方式&#xff0c;如果只想下载Centos那么就访问方式一的下载地址即可&#xff0c;如果还想下载其他的系统&a…

AI大模型探索之路-实战篇5: Open Interpreter开放代码解释器调研实践

系列篇章&#x1f4a5; AI大模型探索之路-实战篇4&#xff1a;DB-GPT数据应用开发框架调研实践 目录 系列篇章&#x1f4a5;前言一、何为Open Interpreter&#xff1f;二、与 ChatGPT 的代码解释器比较三、 Open Interpreter的特性1、强大的本地计算能力2、丰富的功能3、高度的…

基于springboot+vue的招聘信息管理系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

生产物流智能优化系统

对生产调度、物流调度【车辆路径问题、配送中心拣选问题】智能优化算法研究形成系统性程序&#xff0c;逐步开发设计一个智能优化系统【包括&#xff1a;问题说明、实验界面、算法结构和算法程序应用说明】&#xff0c; 当前完成TSP和集送车辆路径的算法程序&#xff0c;程序效…

产品经理-需求分析(三)

1. 需求分析 从业务的需要出发&#xff0c;确定业务目的和目标&#xff0c;将业务需求转为产品需求 1.1 业务需求 业务需求 业务动机 业务目标 就是最根本的动机和目标成果&#xff0c;通过这个需求解决特定的问题 1.2 产品需求 产品需求 解决方案 产品结构 产品流程…

Java进阶学习笔记8——单继承、Object类、方法重写

Java 是单继承的&#xff0c;Java中的类不支持多继承&#xff0c;但是支持多层继承。 Object类是所有类的父类。 Java不支持多类继承&#xff1a; Java支持多层继承&#xff1a; 反证法&#xff1a; Object类&#xff1a; Object类是java所有类的祖宗类&#xff0c;我们写的任…

Excel中Lookup函数

#Excel查找函数最常用的是Vlookup&#xff0c;而且是经常用其精确查找。Lookup函数的强大之处在于其“二分法”的原理。 LOOKUP&#xff08;查找值&#xff0c;查找区域&#xff08;Vector/Array&#xff09;&#xff0c;[返回结果区域]&#xff09; 为什么查找区域必须升序/…

2024年全国大学生电工数学建模竞赛B题解析 | 数据处理 代码 论文分享

B 题&#xff1a;大学生平衡膳食食谱的优化设计及评价 1 数据预处理2 问题一2.1 问题1.12.1.1 评价体系的构建2.1.2 指标计算2.1.3 指标计算结果2.1.4 基于层次分析法的膳食营养评价模型2.1.5 评价模型的求解 2.2 问题1.22.2.1 食物与成分间拓扑关系的构建2.2.2 微调模型的建立…