TENT: FULLY TEST-TIME ADAPTATION BY ENTROPY MINIMIZATION--论文笔记

论文笔记

资料

1.代码地址

https://github.com/DequanWang/tent

2.论文地址

https://arxiv.org/abs/2006.10726

1论文摘要的翻译

在这种完全测试时适应的情况下,模型只有测试数据和自身参数。我们建议通过测试熵最小化(tent)进行适应:我们通过预测熵来优化模型的置信度。我们的方法会估算归一化统计量,并优化通道仿射变换,以便在每个批次上进行在线更新。Tent 降低了损坏的 ImageNet 和 CIFAR-10/100 图像分类的泛化误差,并达到了最先进的误差。在从 SVHN 到 MNIST/MNIST-M/USPS 的数字识别、从 GTA 到 Cityscapes 的语义分割以及 VisDA-C 基准上,Tent 处理了无源域适应。这些结果是在不改变训练的情况下,通过一次测试时间优化取得的。

2论文的创新点

2.1

强调了只有目标数据而没有源数据的完全测试时适应的设置。为了强调推理过程中的实际适应性,我们对离线和在线更新进行基准测试

2.2

我们将熵作为自适应目标,并提出了一种测试时间熵最小化方案(Tent),通过降低测试数据上模型预测的熵来减少泛化误差

2.3

对于对的鲁棒性,tent在ImageNet-C上达到44.0%的错误率,优于鲁棒训练(50.2%)和测试时间标准化的强基线(49.9%)

2.4

对于领域自适应,tent能够在线和无源地适应数字分类和语义分割,甚至可以与使用源数据并进行更多优化的方法相媲美

3 论文方法的概述

熵与误差有关,置信度更高的预测总体上更正确,下图为在熵低的数据集上预测具有更低的误差。所以确定性可以作为测试过程中的监督。
在这里插入图片描述
这里发现熵与corruption造成的偏移有关,因为corruption越多,熵就越大,随着corruption程度的增加,熵 与 图像分类的loss有很强的相关性。
在这里插入图片描述
为了最小化熵,tent通过估计统计量和逐批优化仿射参数对目标数据的推理进行归一化和转换。这种选择的低维、通道特征调制在测试期间是有效的,即使是在线更新。tent不限制或改变模型训练:它独立于给定模型参数的源数据。如果模型可以运行,就可以进行调整。最重要的是,tent不仅有效地减少了熵,还减少了误差。
本文的研究结果评估了图像分类中对corruption的泛化,对数字识别的域移位,以及对语义分割的模拟到真实移位。对于具有更多数据和优化的上下文,我们评估了给定标记源数据的鲁棒训练、领域适应和自监督学习方法。在给定目标数据的情况下,Tent可以实现更小的错误,并且在ImageNet-C基准测试的基础上进行了改进。分析实验支持我们的熵目标,检查对数据量的敏感性和适应参数的选择,并支持跨架构的普遍性

Adaptation处理从源到目标的泛化的任务。在源数据和标签 x s x^s xs, y s y^s ys上训练参数为θ的模型 f θ ( x ) f_θ(x) fθ(x)在移位的目标数据 x t x^t xt上测试时可能无法泛化。
我们的tent只需要模型 f θ f_θ fθ和未标记的目标数据 x t x^t xt在推理过程中进行自适应。
下图是总结的 适应设置、所需数据和损失类型。
在这里插入图片描述
我们在测试期间优化模型,通过调节其特征来最小化其预测的熵。我们把我们的方法tent称为测试熵。下图概述了tent的方法过程。
在这里插入图片描述

3.1 ENTROPY OBJECTIVE

我们的TTA的目标 L ( x t ) L(x^t) L(xt)是最小化模型预测的熵 H ( y ) H(y) H(y)

3.2 MODULATION PARAMETERS

模型参数 θ θ θ是测试时间优化的自然选择,这些是对train-time entropy最小化的先验工作的选择然而, θ θ θ是我们设置中训练/源数据的唯一表示,改变 θ θ θ可能会导致模型偏离其训练。此外, f f f可能是非线性的, θ θ θ可能是高维的,这使得优化对test-time的使用过于敏感和低效。
在这里插入图片描述

为了稳定性和效率,我们只更新线性(尺度和移位)和低维(通道方向)的feature modulations。上图显示了显示了modulations的两个步骤

  • 通过统计数据进行规范化和通过参数进行转换。归一化将输入 x x x集中并标准化为 ¯ x = ( x − µ ) / σ ¯x = (x−µ)/σ ¯x=(xµ)/σ,通过其平均值µ和标准差σ。
  • 变换通过尺度 γ γ γ和位移 β β β的仿射参数将 ¯ x ¯x ¯x转换为输出 x 0 = γ ¯ x + β x0 = γ¯x + β x0=γ¯x+β。注意,统计量 µ µ µ σ σ σ是从数据中估计的,而参数 γ γ γ β β β是通过损失优化的。

为了实现,我们只需重新利用源模型的规范化层。我们在测试过程中更新了所有层和通道的归一化统计量和仿射参数。

3.3 ALGORITHM

  • Initialization
    优化器收集源模型中每个归一化层 l l l和通道 k k k的仿射变换参数 γ l , k , β l , k {γl,k, βl,k} γl,kβl,k。其余参数 θ θ θ\ γ l , k , β l , k {γl,k, βl,k} γl,kβl,k是固定的。源数据的归一化统计 µ l , k , σ l , k {µl,k, σl,k} µl,kσl,k将被丢弃。
  • Iteration
    每一步更新一批数据的规范化统计信息和转换参数。在向前传递期间,依次估计每层的归一化统计量。在反向传递过程中,通过预测熵 ∇ H ( y ) ∇H(y) H(y)的梯度来更新变换参数 γ 、 β γ、β γβ。注意,转换更新遵循当前批处理的预测,因此它只影响下一个批处理(除非重复forward操作)。每个额外的计算点只需要一个梯度,所以我们默认使用这个方案来提高效率。
  • Termination
    对于在线适配,不需要终止,只要有测试数据,迭代就会继续。对于离线自适应,首先更新模型,然后重复推理

当然,适应可以通过多个时代的更新来继续。

4 论文实验

我们评估了tent在CIFAR-10/CIFAR-100和ImageNet上的corruption鲁棒性,以及SVHN对MNIST/MNIST- m /USPS的数字自适应的领域适应性。

数据集

CIFAR-10、CIFAR-100、ImageNet上的损坏鲁棒性,
MNIST、MNIST- m 、USPS

基础模型

对于corruption,我们使用残差网络, CIFAR10/100上有26层(R-26), ImageNet上有50层(R-50)。
对于domain adaption,我们使用R-26架构。为了公平比较,每个实验条件下的所有方法都使用相同的架构。

训练超参数

我们根据源模型的训练超参数对调制参数 γ , β γ, β γβ进行了优化,并且变化很小。在ImageNet上,我们使用SGD进行动量优化;在其他数据集上,我们由Adam优化(Kingma & Ba, 2015)。我们降低批大小(BatchSize, BS)以减少用于推理的内存使用,然后通过相同的因素降低学习率(LearningRate, LR)以进行补偿(Goyal等人,2017)。在ImageNet上,我们设置BS = 64, LR = 0.00025,在其他数据集上,我们设置BS = 128, LR = 0.001。我们通过随机打乱和跨方法共享顺序来控制排序。

基线任务

  • Source将训练好的分类器应用于测试数据而不进行自适应;
  • 对抗性域自适应(RG)反转域分类器在源和目标上的梯度,以优化域不变表示
  • 自监督域自适应(UDA-SS)在源和目标上联合训练自监督旋转和定位任务,以优化共享表示
  • 测试时训练(TTT)在源上对监督任务和自监督任务进行联合训练,然后在测试过程中对目标上的自监督任务进行持续训练
  • 测试时间归一化(test-time normalization, BN)在测试过程中更新目标数据上的批归一化统计
  • 伪标记(PL)调整置信度阈值,将超过阈值的预测分配为标签,然后在测试之前针对这些伪标签优化模型

4.1 稳健性 TO CORRUPTIONS

Tent用更少的数据和计算提高了性能。下表报告了在最严重的corruptions程度下不同腐败类型的平均错误。在CIFAR-10/100-C上,比较了所有方法,包括那些需要跨域或损失联合训练的方法,同时考虑到这些数据集的方便大小。这里的适应是离线的,以便与离线基线进行公平比较。Tent改进了全测试时间自适应基线(BN, PL),也改进了域自适应(RG, UDA-SS)和测试时间训练(TTT)方法,这些方法需要在源和目标上进行多次优化。
在这里插入图片描述
下图绘制了在ImageNet-C上每种损坏类型在损坏级别上的平均误差。
在这里插入图片描述

4.2 SOURCE-FREE DOMAIN ADAPTATION

Tent适应无源目标。表3报告了域适应和完测试时间适应方法的目标误差。测试时间归一化(Test-time normalization, BN)的性能略有提高,而对抗性领域自适应(arial domain adaptation, RG)和自监督领域自适应(self-supervised domain adaptive, UDA-SS)在源和目标联合训练下的性能有较大提高。Tent总是比源模型和BN具有更低的误差,并且在2/3的情况下达到最低的误差,即使只有一个历元并且不使用源数据。
在这里插入图片描述

4.3 分析

==Tent减少了熵和误差。==下图验证了tent确实减少了熵和任务损失(softmax cross-entropy)。我们绘制了CIFAR-100-C上所有75种损坏类型/级别组合的熵和损失的变化。两个轴都通过预测的最大熵(log 100)进行归一化,并裁剪为±1。大多数点经过自适应后熵值和误差都较低。
在这里插入图片描述
在这里插入图片描述
帐篷适应不同的架构。原则上帐篷是建筑不可知论者。为了衡量其在实践中的通用性,我们评估了基于自关注(SAN)和平衡求解(MDEQ) 的新架构在CIFAR-100-C上的损坏鲁棒性。下表显示,在与卷积残差网络相同的设置下,tent减少了误差。
在这里插入图片描述

5总结

Tent通过最小化测试时间熵来减少移位数据的泛化误差。在最小化熵的过程中,模型根据自己预测的反馈进行自我调整。这才是真正的自我监督的自我提升。这种类型的自我监督完全由被监督任务定义,不像代理任务旨在从数据中提取更多的监督,但它仍然显著地减少了错误。然而,由于corruption 和其他变化造成的错误仍然存在,因此需要更多的适应。接下来的步骤应该追求测试时间适应更多和更困难类型的转移,在更一般的参数,并通过更有效和高效的损失。

Shifts
Tent减少了各种转换的错误,包括图像损坏,数字外观的简单变化以及模拟到真实的差异。

Parameters
Tent通过规范化和转换来调整模型,但模型的大部分保持固定。test-time adaption可以更新更多的模型,但问题是要确定既具有表现力又可靠的参数,这可能与损失的选择相互作用。

Losses
Tent使熵最小化。对于更强的adaption,对于一般的但偶然的测试时间优化是否有有效的损失?熵在任务中是通用的,但在范围上是有限的。它需要批量优化,并且不能一次在一个点上偶然更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/638515.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

windows查看mysql的版本(三种方法)

方法一:在win r 打开 cmd,在cmd命令状态下:mysql --help 回车即可 方法二:在mysql客户端窗口状态下:输入status并回车即可 在计算机开始菜单搜索以上应用打开即可进入mysql客户端窗口。 方法三:在mys…

python2.x版本安装、安装pip

文章目录 一、安装python二、安装pip2.1、pip简介2.2、pip安装2.3、no such option: -e2.4、pip卸载2.5、pip扩展 本文讲解在windows系统装安装python2.7.13版本 一、安装python 1.下载安装包,官网链接地址:https://www.python.org/downloads/ 直接在…

寻找峰值 ---- 二分查找

题目链接 题目: 分析: 因为题目中要找的是任意一个峰值即可, 所以和<山脉数组的峰值索引>这道题差不多因为峰值左右都小于峰值, 所以具有"二段性", 可以使用二分查找算法如果nums[mid] < nums[mid 1], mid一定不是峰值, 所以left mid 1如果nums[mid] &…

java技术:spring-secrity实现认证、授权

目录 一、依赖 二、逻辑图 三、代码设计 1、WebSecurityConfigurerAdapter的实现类 2、设计登录接口 config配置&#xff1a; 1&#xff09;UserDetailsService实现类重写&#xff1a; 2&#xff09;书写登录实现类&#xff08;调用authenticationManager、可以与后面的…

MariaDB 给指定列值自动加密(持久数据加触发器)

文章目录 代码插入时&#xff0c;自动加密更新时&#xff0c;自动加密查看触发器数据操作示例update数据取出解密取 注意一次尝试&#xff0c;看加密后数据长度 参考链接&#xff1a; 一篇非常好的讲解触发器的文章&#xff1a;示例、原理MySQL/MariaDB触发器。 用触发器自动加…

Android App启动流程和源码详解

前言 之前看了些App启动流程的文章&#xff0c;但是看得很浅显&#xff0c;隔了没多久就忘了&#xff0c;自己抓耳挠腮的终于看完了&#xff0c;看得头疼哦。因为很多是个人理解&#xff0c;大哥们主打一个7分信&#xff0c;2分思考&#xff0c;1分怀疑哈。 主要看的源码是An…

CPP Con 2020:Type Traits I

先谈谈Meta Programming 啥是元编程呢&#xff1f;很简单&#xff0c;就是那些将其他程序当作数据来进行处理和传递的编程&#xff08;私人感觉有点类似于函数式&#xff1f;&#xff09;这个其他程序可以是自己也可以是其他程序。元编程可以发生在编译时也可以发生在运行时。…

27寸2K显示器 - HKC G27H2

HKC G27H2是一款面向电竞市场的高性能显示器&#xff0c;以其2K分辨率和180Hz的刷新率作为主要卖点&#xff0c;旨在为玩家提供流畅而清晰的视觉体验。配备HDR 400技术和95% DCI-P3色域覆盖&#xff0c;这款显示器还支持升降旋转支架&#xff0c;为用户提供了高度的人体工程学适…

微软开源多模态大模型Phi-3-vision,微调实战来了

节前&#xff0c;我们组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型& AIGC 技术趋势、大模型& AIGC 落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了…

继承初级入门复习

注意&#xff1a;保护和私有在类中没有区别&#xff0c;但是在继承中有区别&#xff0c;private在继承的子类不可见&#xff0c;protect在继承的子类可见 记忆方法&#xff1a;先看基类的修饰符是private&#xff0c;那都是不可见的。如果不是&#xff0c;那就用继承的修饰和基…

知了传课Flask学习(持续更新)

一、基础内容 1.Flask快速应用 pip install flask from flask import Flaskapp Flask(__name__)app.route(/) def index():return Hello worldif __name__ __main__:app.run() 2.debug、host、port配置 from flask import Flask,requestapp Flask(__name__)app.route(/) d…

在洁净实验室设计装修中怎么选择合适实验室家具?

在现代科学研究和技术开发中&#xff0c;洁净实验室装修设计成为了确保实验准确性和安全性的重要因素。洁净实验室需要提供一个无尘、无菌、受控的环境&#xff0c;而在洁净实验室装修设计这个过程中&#xff0c;如何选择合适的实验室家具就显得尤为重要&#xff0c;因为它直接…

第一行代码 按书配置Menu不出来

问题&#xff1a;按照书本配置Menu&#xff0c;就是不出来 页面activity 源码 重写了&#xff1a;onCreateOptionsMenu(), onOptionsItemSelected() package com.example.lanidemoktimport android.os.Bundle import android.util.Log import android.view.Menu import andro…

欢乐钓鱼大师攻略大全,游戏自动辅助,钓鱼大全!

欢迎来到《欢乐钓鱼大师》的攻略大全&#xff01;本文将为你详细介绍游戏中的各类玩法、技巧和注意事项&#xff0c;帮助你快速掌握游戏精髓&#xff0c;成为一名真正的钓鱼大师。攻略内容包括新手鱼竿选择、锦标赛攻略、实用技巧、藏宝图玩法、箱子开法等多个方面。让我们一起…

个人博客网站开发笔记3

文章目录 前言p4 Front Matterp5 配置文件p6 命令p7 部署新的教学视频部署博客到github找视频教程也是一个技能详细步骤安装主题安装渲染器修改主题创建gitub仓库生成密钥验证密钥是否匹配修改config文件推送到github 前言 主要是安装啥的比较费劲 现在已经比较简单了感觉 之…

面试问题小结

说说你的项目&#xff0c;从里面学到啥了&#xff08;随便说&#xff09; CAS 线程池 的各个方面 线程咋创建&#xff08;4种方式&#xff09; 说一下聚集索引和非聚集索引 50w男 50w女 &#xff0c;在B树中咋存储的&#xff08;类似下面的图&#xff0c;变通一下就行了&a…

WXML模板语法-事件绑定

一、 1.事件 事件是渲染层到逻辑层的通讯方式&#xff0c;通过事件可以将用户在渲染层产生的行为&#xff0c;反馈到逻辑层进行业务的处理 2.小程序中常用的事件 3.事件对象的属性列表 当事件回调触发的时候&#xff0c;会收到一个事件对象event&#xff0c;其属性为&#x…

一文带你入门ini格式

引入: 以蜂鸣器为例&#xff0c;每次我们增加新的设备&#xff0c; 都需要添加两个新文件: 修改程序代码&#xff0c;手动添加: 缺点: 不利于维护 设备类节点直接通过ini文件配置 什么是.ini文件 ini文件通常以纯文本形式存在&#xff0c;并且包含了一个或多个节&#xff08;se…

快速搭建流媒体服务

1、安装流媒体服务 源码地址&#xff1a;https://gitee.com/ossrs/srs 本次采用docker安装 docker run --rm -it -p 1935:1935 -p 1985:1985 -p 8080:8080 -p 8000:8000/udp -p 10080:10080/udp registry.cn-hangzhou.aliyuncs.com/ossrs/srs:5 查看运行效果&#xff…

[LLM-Agents]浅析Agent工具使用框架:MM-ReAct

上文LLM-Agents]详解Agent中工具使用Workflow提到MM-ReAct框架&#xff0c;通过结合ChatGPT 与视觉专家模型来解决复杂的视觉理解任务的框架。通过设计文本提示&#xff08;prompt design&#xff09;&#xff0c;使得语言模型能够接受、关联和处理多模态信息&#xff0c;如图像…