基于二进制草蝉优化算法选择特征并使用 KNN 进行训练(Matlab代码实现)

     目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码

💥1 概述

基于二进制草蝉优化算法选择特征并使用KNN(K-Nearest Neighbors,K最近邻算法)进行训练是一种特征选择和分类算法的组合。这种方法主要用于解决特征选择问题,并利用选定的特征集合来训练KNN分类器。

下面是该算法的基本步骤:

特征选择:

采用二进制草蝉优化算法对原始特征集进行优化,从而选择出最佳特征子集。二进制草蝉优化算法是一种基于草蝉行为的启发式优化算法,用于解决特征选择问题。该算法通过模拟草蝉的生存行为来选择特征子集,以使得目标函数最小化或最大化。

特征提取:

通过二进制草蝉优化算法选择出的最佳特征子集,对原始数据集进行特征提取,得到一个新的数据集,该数据集只包含选定的特征。

数据预处理:

对特征提取后的数据集进行预处理,包括归一化、标准化或其他必要的数据处理步骤,以确保数据的可比性和有效性。

KNN分类器:

使用KNN算法来对处理后的数据集进行分类。KNN是一种常见的分类算法,它通过计算待分类样本与训练样本之间的距离,选取最近的K个训练样本,并根据这K个样本的分类标签来预测待分类样本的标签。

训练和测试:

使用经过特征选择和KNN分类器训练得到的模型,对测试数据进行分类,评估分类结果的准确性和性能。

需要注意的是,特征选择是为了去除冗余和噪音特征,提高分类性能和降低计算复杂度。而KNN作为分类器是一种懒惰学习方法,具有简单易实现的优点,但在大规模数据上可能效率较低。

最终的结果取决于草蝉优化算法的性能、特征选择和KNN分类器的调优以及数据集本身的特性。因此,在实际应用中,可能需要进行多次实验和优化,以选择最合适的特征子集和分类器参数。同时,建议参考相关研究论文和文献,以获得更深入的了解和具体实现细节。

📚2 运行结果

主函数部分代码:

close all
clear
clc
addpath(genpath(cd))
%% load the data
% load winedata.mat
load breast-cancer-wisconsin
% load ionosphere
% load Parliment1984
% load heartdata
load lymphography
%%
% preprocess data to remove Nan entries
for ii=1:size(Tdata,2)
    nanindex=isnan(Tdata(:,ii));
    Tdata(nanindex,:)=[];
end
labels=Tdata(:,end);                  %classes
attributesData=Tdata(:,1:end-1);      %wine data
% for ii=1:size(attributesData,2)       %normalize the data
%     attributesData(:,ii)=normalize(attributesData(:,ii));
% end
[rows,colms]=size(attributesData);  %size of data    
%% seprate the data into training and testing
[trainIdx,~,testIdx]=dividerand(rows,0.8,0,0.2);
trainData=attributesData(trainIdx,:);   %training data
testData=attributesData(testIdx,:);     %testing data
trainlabel=labels(trainIdx);            %training labels
testlabel=labels(testIdx);              %testing labels
%% KNN classification
Mdl = fitcknn(trainData,trainlabel,'NumNeighbors',5,'Standardize',1);
predictedLables_KNN=predict(Mdl,testData);
cp=classperf(testlabel,predictedLables_KNN);
err=cp.ErrorRate;
accuracy=cp.CorrectRate;
%% SA optimisation for feature selection
dim=size(attributesData,2);
lb=0;ub=1;
x0=round(rand(1,dim));
fun=@(x) objfun(x,trainData,testData,trainlabel,testlabel,dim);
options = optimoptions(@simulannealbnd,'MaxIterations',150,...
            'PlotFcn','saplotbestf');
[x,fval,exitflag,output]  = simulannealbnd(fun,x0,zeros(1,dim),ones(1,dim),options) ;
Target_pos_SA=round(x);
% final evaluation for GOA tuned selected features
[error_SA,accuracy_SA,predictedLables_SA]=finalEval(Target_pos_SA,trainData,testData,...
                                                                   trainlabel,testlabel);
%% GOA optimisation for feature selection
SearchAgents_no=10; % Number of search agents
Max_iteration=100; % Maximum numbef of iterations
[Target_score,Target_pos,GOA_cg_curve, Trajectories,fitness_history,...
          position_history]=binaryGOA(SearchAgents_no,Max_iteration,lb,ub,dim,...
                                            trainData,testData,trainlabel,testlabel);
% final evaluation for GOA tuned selected features
[error_GOA,accuracy_GOA,predictedLables_GOA]=finalEval(Target_pos,trainData,testData,trainlabel,testlabel);                                                               
​
%%
% plot for Predicted classes
figure
plot(testlabel,'s','LineWidth',1,'MarkerSize',12)
hold on
plot(predictedLables_KNN,'o','LineWidth',1,'MarkerSize',6)
hold on
plot(predictedLables_GOA,'x','LineWidth',1,'MarkerSize',6)
hold on
plot(predictedLables_SA,'^','LineWidth',1,'MarkerSize',6)
% hold on
% plot(predictedLables,'.','LineWidth',1,'MarkerSize',3)
legend('Original Labels','Predicted by All','Predcited by GOA Tuned',...          
                                 'Predcited by SA Tuned','Location','best')
title('Output Label comparison of testing Data')
xlabel('-->No of test points')
ylabel('Test Data Labels' )
axis tight
​
% pie chart for accuracy corresponding to number of features
figure
subplot(1,2,1)
labels={num2str(size(testData,2)),num2str(numel(find(Target_pos))),...
                                      num2str(numel(find(Target_pos_SA)))};
​
pie([(size(testData,2)),numel(find(Target_pos)),numel(find(Target_pos_SA))],labels)
title('Number of features selected')
legendlabels={'Total Features','Features after GOA Selection',...
                                                    'Features after SA Selection'};
legend(legendlabels,'Location','southoutside','Orientation','vertical')
​
subplot(1,2,2)
labels={num2str(accuracy*100),num2str(accuracy_GOA*100),num2str(accuracy_SA*100)};
pie([accuracy,accuracy_GOA,accuracy_SA].*100,labels)                                                        
title('Accuracy for features selected')
legendlabels={'Total Features','Features after GOA Selection',...
                                                       'Features after SA Selection'};
legend(legendlabels,'Location','southoutside','Orientation','vertical')
               

🎉3 参考文献

[1]张著英,黄玉龙,王翰虎.一个高效的KNN分类算法[J].计算机科学,2008(03):170-172.

部分理论引用网络文献,若有侵权联系博主删除。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/62998.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

安全基础 --- https详解 + 数组(js)

CIA三属性:完整性(Confidentiality)、保密性(Integrity)、可用性(Availability),也称信息安全三要素。 https 核心技术:用非对称加密传输对称加密的密钥,然后…

分库分表之基于Shardingjdbc+docker+mysql主从架构实现读写分离 (三)

本篇主要说明: 1. 因为这个mysql版本是8.0,所以当其中一台mysql节点挂掉之后,主从同步,甚至双向数据同步都失效了,所以本篇主要记录下当其中的节点挂掉之后如何再次生效。另外推荐大家使用mysql5.7的版本,这…

ORA-12154:TNS:could not resolve the connect identifier specified

避免中文乱码 NLS_LANG: AMERICAN_AMERICA.UTF8 tnsnames.ora 所在目录 TNS_ADMIN: F:\Program\instantclient_11_2\NETWORK\ADMIN

MacBook触控板窗口管理 Swish for Mac

Swish for Mac是一款用于通过手势来控制mac应用窗口的软件,你可以通过这款软件在触控板上进行手势控制,你可以在使用前预设好不同手势的功能,然后就能直接通过这些手势让窗口按照你想要的方式进行变动了 Swish 支持 Haptick Feedback 震动反…

postgresql|数据库|MySQL数据库向postgresql数据库迁移的工具pgloader的部署和初步使用

前言: MySQL数据库和postgresql数据库之间的差异并不多,这里的差异指的是对SQL语言的支持两者并不大,但底层的东西差异是非常多的,例如,MySQL的innodb引擎概念,数据库用户管理,这些和postgresq…

ruby调试

如果下载 ruby-debug-ide gem install ruby-debug-ide vscode 下载 ruby扩展 1, ruby 2,修改launch.json

windows .gitignore 加入文件名后 依然可以从git status中看到文件问题

最近在学git,对着b站的视频操作,结果很简单的添加.gitignore文件操作,up主的正常隐藏,我的却一直出问题。 百思不得其解,网上各种啥啥啥清缓存都没讲到点上。 最后发现是.gitignore文件有问题,windows默认…

LNMP及论坛搭建

安装 Nginx 服务 systemctl stop firewalld systemctl disable firewalld setenforce 0 1.安装依赖包 #nginx的配置及运行需要pcre、zlib等软件包的支持,因此需要安装这些软件的开发包,以便提供相应的库和头文件。 yum -y install pcre-devel zlib-devel…

Linux【网络编程】之深入理解TCP协议

Linux【网络编程】之深入理解TCP协议 TCP协议TCP协议段格式4位首部长度---TCP报头长度信息 TCP可靠性(确认应答)&& 提高传输效率确认应答(ACK)机制32位序号与32为确认序号 16位窗口大小---自己接收缓冲区剩余空间的大小16位紧急指针---紧急数据处…

Vue电商项目--订单和支付

提交订单 没有组件,先搬组件 配置路由 然后静态pay页面就有了 这里提交订单不是简单的直接进行路由的跳转,而且要拿你支付的数据向服务器发请求 提交订单 请求地址 /api/order/auth/submitOrder?tradeNo{tradeNo} 请求方式 POST 参数类型 参数名…

边写代码边学习之LSTM

1. 什么是LSTM 长短期记忆网络 LSTM(long short-term memory)是 RNN 的一种变体,其核心概念在于细胞状态以及“门”结构。细胞状态相当于信息传输的路径,让信息能在序列连中传递下去。你可以将其看作网络的“记忆”。理论上讲&a…

Stable Diffusion - Candy Land (糖果世界) LoRA 提示词配置与效果展示

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132145248 糖果世界 (Candy Land) 是一个充满甜蜜和奇幻的地方,由各种各样的糖果和巧克力构成。在糖果世界,可以看到&…

Qt、C/C++环境中内嵌LUA脚本、实现LUA函数的调用执行

Qt、C/C环境中内嵌LUA脚本、实现LUA函数的调用执行 Chapter1. Qt、C/C环境中内嵌LUA脚本、实现LUA函数的调用执行1、LUA简介2、LUA脚本的解释器和编译器3、C环境中内嵌LUA执行LUA函数调用4、Qt内嵌LUA执行LUA函数调用5、运行结果6、内嵌LUA脚本在实际项目中的案例应用 Chapter1…

手机变电脑2023之虚拟电脑droidvm

手机这么大的内存,装个app来模拟linux,还是没问题的。 app 装好后,手指点几下确定按钮,等几分钟就能把linux桌面环境安装好。 不需要敲指令, 不需要对手机刷机, 不需要特殊权限, 不需要找驱…

opencv-32 图像平滑处理-高斯滤波cv2.GaussianBlur()

在进行均值滤波和方框滤波时,其邻域内每个像素的权重是相等的。在高斯滤波中,会将中心点的权重值加大,远离中心点的权重值减小,在此基础上计算邻域内各个像素值不同权重 的和。 基本原理 在高斯滤波中,卷积核中的值不…

第一篇:一文看懂 Vue.js 3.0 的优化

我们的课程是要解读 Vue.js 框架的源码,所以在进入课程之前我们先来了解一下 Vue.js 框架演进的过程,也就是 Vue.js 3.0 主要做了哪些优化。 Vue.js 从 1.x 到 2.0 版本,最大的升级就是引入了虚拟 DOM 的概念,它为后续做服务端渲…

Scala按天写入日志文件

如果希望把每天出错的信息写入日志文件,每天新建一个文件。 package test.scala import java.io.{File, FileWriter} import java.text.SimpleDateFormat import java.util.{Calendar, Date} import scala.concurrent.ExecutionContext.Implicits.global import sc…

CS录屏教程,录制游戏需要注意哪些方面?

​最近有个CS手游的玩家小伙伴咨询想要做一些游戏视频录制,但是不知道有哪些好用的工具来使用,对于游戏录制我们其实是需要注意一些事项的,想要观众的观感上比较好就需要把握好视频的帧率等问题,下面我们就来看看录制方法和需要注…

最小二乘问题和非线性优化

最小二乘问题和非线性优化 0.引言1.最小二乘问题2.迭代下降法3.最速下降法4.牛顿法5.阻尼法6.高斯牛顿(GN)法7.莱文贝格马夸特(LM)法8.鲁棒核函数 0.引言 转载自此处,修正了一点小错误。 1.最小二乘问题 在求解 SLAM 中的最优状态估计问题时,我们一般…

RISC-V - 小记

文章目录 关于 RISC-V安装 关于 RISC-V RISC : Reduced Instruction Set Computing RISC-V(“RISC five”)的目标是成为一个通用的指令集架构(ISA) 官网:https://riscv.orggithub : https://github.com/riscv 教程 [完结] 循序渐进,学习开发一个RISC-…