【MATLAB源码-第59期】基于matlab的QPSK,16QAM164QAM等调制方式误码率对比,调制解调函数均是手动实现未调用内置函数。

操作环境:

MATLAB 2022a

1、算法描述

正交幅度调制(QAM,Quadrature Amplitude Modulation)是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。这种调制方式因此而得名。

同其它调制方式类似,QAM通过载波某些参数的变化传输信息。在QAM中,数据信号由相互正交的两个载波的幅度变化表示。

模拟信号的相位调制和数字信号的PSK可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。由此,模拟信号频率调制和数字信号FSK也可以被认为是相位调制(PSK)的特例,因为它们本质上就是相位调制。这里主要讨论数字信号的QAM,虽然模拟信号QAM也有很多应用,例如NTSC和PAL制式的电视系统就利用正交的载波传输不同的颜色分量。

类似于其他数字调制方式,QAM发射信号集可以用星座图方便地表示。星座图上每一个星座点对应发射信号集中的一个信号。设正交幅度调制的发射信号集大小为 N

,称之为N-QAM。星座点经常采用水平和垂直方向等间距的正方网格配置,当然也有其他的配置方式。数字通信中数据常采用二进制表示,这种情况下星座点的个数一般是2的幂。常见的QAM形式有16-QAM、64-QAM、256-QAM,以及未来5G采用之512-QAM及1024-QAM。星座点数越多,每个符号能传输的信息量就越大。但是,如果在星座图的平均能量保持不变的情况下增加星座点,会使星座点之间的距离变小,进而导致误码率上升。因此高阶星座图的可靠性比低阶要差。

当对数据传输速率的要求高过8-PSK能提供的上限时,一般采用QAM的调制方式。因为QAM的星座点比PSK的星座点更分散,星座点之间的距离因之更大,所以能提供更好的传输性能。但是QAM星座点的幅度不是完全相同的,所以它的解调器需要能同时正确检测相位和幅度,不像PSK解调只需要检测相位,这增加了QAM解调器的复杂性。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第59期】基于matlab的QPSK,16QAM164QAM等调制方式误码率对比,调制解调函数均是手动实现未调用内置函数。_qpsk和16qam误码率比较-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Koukesuki/article/details/134082864?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171567705216800215028795%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=171567705216800215028795&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-134082864-null-null.nonecase&utm_term=59&spm=1018.2226.3001.4450

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/626906.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【R语言与统计】SEM结构方程、生物群落、多元统计分析、回归及混合效应模型、贝叶斯、极值统计学、meta分析、copula、分位数回归、文献计量学

统计模型的七大类:一:多元回归 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值&…

[Algorithm][回溯][组合][目标和][组合总和]详细讲解

目录 1.组合1.题目链接2.算法原理详解3.代码实现 2.目标和1.题目链接2.算法原理详解3.代码实现 3.组合总和1.题目链接2.算法原理详解3.代码实现 1.组合 1.题目链接 组合 2.算法原理详解 思路:每次都只选一个数,此后只能选它后面的数函数设计&#xff…

RK3568平台开发系列讲解(SPI篇)spi_dev 驱动分析

🚀返回专栏总目录 文章目录 一、结构体二、API三、spidev驱动分析3.1、init3.2、probe3.3、spidev_write3.4、spidev_read3.5、spidev_open四、spi_register_driver分析五、spi_dev缺点沉淀、分享、成长

通过java将数据导出为PDF,包扣合并单元格操作

最近项目中需要将查询出来的表格数据以PDF形式导出&#xff0c;并且表格的形式包含横向行与纵向列的单元格合并操作&#xff0c;导出的最终效果如图所示&#xff1a; 首先引入操作依赖 <!--导出pdf所需包--><dependency><groupId>com.itextpdf</groupId&…

项目管理-案例重点知识(风险管理)

项目管理 : 每天进步一点点~ 活到老&#xff0c;学到老 ヾ(◍∇◍)&#xff89;&#xff9e; 何时学习都不晚&#xff0c;加油 二、风险管理 案例重点 重点内容&#xff1a; &#xff08;1&#xff09;风险划分 &#xff08;2&#xff09;SWOT 分析&#xff0c;提示清单 …

Golang RPC实现-day01

导航 Golang RPC实现一、主体逻辑设计二、服务设计1、监听和接收请求2、处理请求(1)服务结构体定义(2)确认请求方和服务方编解码格式(3)循环读取请求(4)解析请求的内容(5)响应请求 三、读取和发送数据到连接中代码 Golang RPC实现 先来一个最简单的版本&#xff0c;后续更新。…

BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis 论文阅读

&#xff08;水一篇博客&#xff09; 项目主页 BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis 作者介绍 是 Mildenhall 和 Barron 参与的工作&#xff08;都是谷歌的&#xff09;&#xff0c;同时一作是 Lipman 的学生&#xff0c;VolSDF 的一作。本文引用…

使用Caché管理工具

Cach通过一个web工具来对其进行系统管理和完成管理任务,该方法的一个好处是不必将Cach安装到用于管理的系统上。目前,通过网络远程管理和控制对站点的访问,这些都比较容易。因为数据及其格式信息都直接来自被管理的系统,因此,这也可以最小化跨版本的兼容问题。 本文将描述…

企业微信hook接口协议,ipad协议http,获取群成员列表简洁版

获取群成员列表简洁版 参数名必选类型说明uuid是String每个实例的唯一标识&#xff0c;根据uuid操作具体企业微信 请求示例 {"uuid":"3240fde0-45e2-48c0-90e8-cb098d0ebe43","roomid":10696052955016166 } 返回示例 {"data": {&q…

K8S内容

K8S介绍 1、故障迁移:当某一个node节点关机或挂掉后&#xff0c;node节点上的服务会自动转移到另一个node节点上&#xff0c;这个过程所有服务不中断。这是docker或普通云主机是不能做到的 2、资源调度:当node节点上的cpu、内存不够用的时候&#xff0c;可以扩充node节点&…

基于SSM的“口腔护理网站”的设计与实现(源码+数据库+文档)

基于SSM的“口腔护理网站”的设计与实现&#xff08;源码数据库文档) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SSM 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 首页 用户注册页面 医生信息查看模块 口腔护理预约模块 后台首页面…

零基础10 天入门 Web3之第3天

10 天入门 Web3之第3天 什么是以太坊&#xff0c;以太坊能做什么&#xff1f;Web3 是互联网的下一代&#xff0c;它将使人们拥有自己的数据并控制自己的在线体验。Web3 基于区块链技术&#xff0c;该技术为安全、透明和可信的交易提供支持。我准备做一个 10 天的学习计划&…

Anaconda下载安装

看到这篇文章的同学们&#xff0c;说明你们是要下载Anaconda&#xff0c;这篇文章讲的就是下载安装教程。 Anaconda下载网址&#xff1a; Download Now | Anaconda 根据我们需要的系统版本下载&#xff0c;我的电脑是window&#xff0c;所以选择第一个&#xff0c;如下图&am…

苍穹外卖-day01(SpringBoot+SSM的企业级Java项目实战)

苍穹外卖-day01 课程内容 软件开发整体介绍 苍穹外卖项目介绍 开发环境搭建 导入接口文档 Swagger 项目整体效果展示&#xff1a; 管理端-外卖商家使用 用户端-点餐用户使用 当我们完成该项目的学习&#xff0c;可以培养以下能力&#xff1a; 1. 软件开发整体介绍 作为…

Power query与Excel的区别,优势?

Power Query是Microsoft Excel的一个强大数据导入、转换和自动化的插件工具&#xff0c;它在Excel 2010之后的版本中被发布出来&#xff0c;随着时间的发展&#xff0c;功能不断增强。 以下是Power Query的一些优势以及它与Excel传统数据处理方式的区别和一些令人印象深刻的功…

鸿蒙内核源码分析 (TLFS 算法篇) | 图表解读 TLFS 原理

动态分配 本篇开始说一个耳朵听起老茧的概念 动态分配&#xff0c;将分成上下两篇&#xff0c;本篇为上篇&#xff0c;看完能快速理解下篇鸿蒙内核源码对动态内存的具体实现。 鸿蒙内核源码分析(TLFS算法) 结合图表从理论视角说清楚 TLFS 算法鸿蒙内核源码分析(内存池管理) 结…

分析 vs2019 cpp20 规范的 STL 库模板 function ,源码注释并探讨几个问题

&#xff08;1 探讨一&#xff09;第一个尝试弄清的问题是父类模板与子类模板的模板参数的对应关系&#xff0c;如下图&#xff1a; 我们要弄清的问题是创建 function 对象时&#xff0c;传递的模板参数 _Fty , 传递到其父类 _Func_class 中时 &#xff0c;父类的模板参数 _Ret…

面试集中营—rocketmq架构篇

一、基本定义 Apache RocketMQ 是一款低延迟、高并发、高可用、高可靠的分布式消息中间件。消息队列 RocketMQ 可为分布式应用系统提供异步解耦和削峰填谷的能力&#xff0c;同时也具备互联网应用所需的海量消息堆积、高吞吐、可靠重试等特性。 Topic&#xff1a;消息主题&…

多格式兼容的在线原型查看:Axure RP的便捷解决方案

Axure rp不仅可以绘制详细的产品构思&#xff0c;还可以在浏览器中生成html页面&#xff0c;但需要安装插件才能打开。安装Axure后 rpchrome插件后&#xff0c;还需要在扩展程序中选择“允许访问文件网站”&#xff0c;否则无法在Axure中成功选择 rp在线查看原型。听起来很麻烦…

添砖Java之路(其七)——static

目录 static&#xff1a; 1.被类的所有对象所共享(和c有点像) 2.多了一种调用方法&#xff0c;可以通过类名调用 3.随着类的加载而加载&#xff0c;是优先于对象的存在。 工具类&#xff1a; 为什么主类的方法要加static&#xff1a; 理解 public static void main&#…