机器学习深度学习——序列模型(NLP启动!)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——卷积神经网络(LeNet)
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

现在多多少少是打下了一点基础了,因为我的本科毕业论文是NLP方向的,所以现在需要赶忙打好NLP模型所需要的知识,然后实现一些NLP方向的科研项目,用于我的9月份预推免。就剩一个月就要开始预推免了,大家一起加油!

序列模型

  • 引入
  • 统计工具
    • 自回归模型
    • 马尔可夫模型
    • 因果关系
  • 训练
  • 预测
  • 总结

引入

对于一部电影,随着时间的推移,人们对电影的看法会发生很大的变化。也就是说,因为时间上的连续性,一些事情的发生也是会互相影响的,如果这些序列重排就会失去意义。有几个例子:
1、音乐、语音、文本和视频都是连续的。
2、地震具有很强的相关性,即大地震发生后,很可能会有几次小余震。
3、人类之间的互动也是连续的,比如微博上互相打口水仗。
4、预测明天的股价要比过去的股价更困难(先见之明比时候诸葛亮要更难)。

统计工具

我们可以通过下式来进行预测:
x t 符合 P ( x t ∣ x t − 1 , . . . , x 1 ) x_t符合P(x_t|x_{t-1},...,x_1) xt符合P(xtxt1,...,x1)
其中,x是非独立同分布的,因为时间上具有连续性,导致不同时间上的预测可能也会有相关性

自回归模型

从上面的式子可以看出,数据的数量随着t而变化:输入数据的数量这个数字将会随着我们遇到的数据量的增加而增加。因此我们需要使得这个计算更加简单,有两种策略:
1、自回归模型
假设显示情况下,相当长的序列
x t − 1 , . . . , x 1 x_{t-1},...,x_1 xt1,...,x1
可能不是必要的,我们只需要满足某个长度τ的时间跨度,即使用观测序列
x t − 1 , . . . , x t − τ x_{t-1},...,x_{t-τ} xt1,...,xtτ
这样的好处是参数的数量总是不变的,至少在t>τ的时候是这样的,既然都是固定长度,那么我们就可以训练之前讲过的几乎所有模型了(线性模型,或者多层感知机等等)。这种模型被称为自回归模型,因此总是队自己执行回归。
2、潜变量自回归模型
如下图所示:
在这里插入图片描述
该图体现出,我们需要保留和更新对过去观测的总结:
h t h_t ht
并且同时更新预测
x t ^ \hat{x_t} xt^
这就产生了基于
x t ^ = P ( x t ∣ h t ) \hat{x_t}=P(x_t|h_t) xt^=P(xtht)
的估计,以及公式
h t = g ( h t − 1 , x t − 1 ) h_t=g(h_{t-1},x_{t-1}) ht=g(ht1,xt1)
更新的模型。
而由于h从未被观测到,所以这类模型也叫作潜变量自回归模型
而整个序列的估计值都将通过以下方式获得:
P ( x 1 , . . . , x T ) = ∏ t = 1 T P ( x t ∣ x t − 1 , . . . , x 1 ) P(x1,...,x_T)=\prod_{t=1}^TP(x_t|x_{t-1},...,x_1) P(x1,...,xT)=t=1TP(xtxt1,...,x1)

马尔可夫模型

我们之前在估计的时候,选择的是在当前时序的前τ个数,只要和当前时序之前的所有数计算得来的结果近似,就说序列满足马尔可夫条件。特别是当τ=1时,得到一个一阶马尔可夫模型:
P ( x ) = P ( x 1 , . . . , x T ) = ∏ t = 1 T P ( x t ∣ x t − 1 ) 当 P ( x 1 ∣ x 0 ) = P ( x 1 ) P(x)=P(x_1,...,x_T)=\prod_{t=1}^TP(x_t|x_{t-1})当P(x_1|x_0)=P(x_1) P(x)=P(x1,...,xT)=t=1TP(xtxt1)P(x1x0)=P(x1)

因果关系

原则上,将P(x)倒序展开也没啥问题,可以基于条件概率公式写成:
P ( x 1 , . . . , x T ) = ∏ t = T 1 P ( x t ∣ x t + 1 , . . . , x T ) P(x_1,...,x_T)=\prod_{t=T}^1P(x_t|x_{t+1},...,x_T) P(x1,...,xT)=t=T1P(xtxt+1,...,xT)
但是在物理上这并不好实现,毕竟理论上一般没有根据未来的事情推测过去的事情。

训练

首先生成一些数据,使用正弦函数和一些可加性噪声来生成序列数据。(现在开始用notebook了)

%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l

T = 1000  # 总共产生1000个点
time = torch.arange(1, T + 1, dtype=torch.float32)
x = torch.sin(0.01 * time) + torch.normal(0, 0.2, (T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))

在这里插入图片描述
接下来,将该序列转换为特征-标签对,这里我们使用前600个“特征-标签”对进行训练:

tau = 4
features = torch.zeros((T - tau, tau))
for i in range(tau):
    features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))

batch_size, n_train = 16, 600
# 只有前n_train个样本用于训练
train_iter = d2l.load_array((features[:n_train], labels[:n_train]),
                            batch_size, is_train=True)

在这里,我们使用一个相当简单的架构训练模型: 一个拥有两个全连接层的多层感知机,ReLU激活函数和平方损失。

# 初始化网络权重的函数
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)

# 一个简单的多层感知机
def get_net():
    net = nn.Sequential(nn.Linear(4, 10),
                        nn.ReLU(),
                        nn.Linear(10, 1))
    net.apply(init_weights)
    return net

# 平方损失。注意:MSELoss计算平方误差时不带系数1/2
loss = nn.MSELoss(reduction='none')

下面开始训练模型:

def train(net, train_iter, loss, epochs, lr):
    trainer = torch.optim.Adam(net.parameters(), lr)  # 一种内置的优化器,可自行去了解
    for epoch in range(epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.sum().backward()
            trainer.step()
        print(f'epoch {epoch + 1}, '
              f'loss: {d2l.evaluate_loss(net, train_iter, loss):f}')

net = get_net()
train(net, train_iter, loss, 5, 0.01)

运行结果:

epoch 1, loss: 0.061968
epoch 2, loss: 0.054118
epoch 3, loss: 0.051940
epoch 4, loss: 0.050062
epoch 5, loss: 0.050939

预测

训练损失看起来不大,那我们可以开始进行单步预测(也就是检查模型预测下一个时间步的能力):

onestep_preds = net(features)
d2l.plot([time, time[tau:]],
         [x.detach().numpy(), onestep_preds.detach().numpy()], 'time',
         'x', legend=['data', '1-step preds'], xlim=[1, 1000],
         figsize=(6, 3))

结果:
在这里插入图片描述
单步预测的效果不错,即便预测的时间步超过了600+4(n_train+tau),结果看起来也还是可以的,但是如果我们继续向前迈进,那么接下来的预测值就要基于之前的预测值和原本值或者完全基于之前的预测值,即:
x ^ 605 = f ( x 601 , x 602 , x 603 , x 604 ) x ^ 606 = f ( x 602 , x 603 , x 604 , x ^ 605 ) x ^ 607 = f ( x 603 , x 604 , x ^ 605 , x ^ 606 ) x ^ 608 = f ( x 604 , x ^ 605 , x ^ 605 , x ^ 607 ) x ^ 609 = f ( x ^ 605 , x ^ 606 , x ^ 607 , x ^ 608 ) \hat{x}_{605}=f(x_{601},x_{602},x_{603},x_{604})\\ \hat{x}_{606}=f(x_{602},x_{603},x_{604},\hat{x}_{605})\\ \hat{x}_{607}=f(x_{603},x_{604},\hat{x}_{605},\hat{x}_{606})\\ \hat{x}_{608}=f(x_{604},\hat{x}_{605},\hat{x}_{605},\hat{x}_{607})\\ \hat{x}_{609}=f(\hat{x}_{605},\hat{x}_{606},\hat{x}_{607},\hat{x}_{608}) x^605=f(x601,x602,x603,x604)x^606=f(x602,x603,x604,x^605)x^607=f(x603,x604,x^605,x^606)x^608=f(x604,x^605,x^605,x^607)x^609=f(x^605,x^606,x^607,x^608)
因此我们必须使用我们自己的预测(而不是原始数据)来进行多步预测:

multistep_preds = torch.zeros(T)
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau, T):
    multistep_preds[i] = net(
        multistep_preds[i - tau:i].reshape((1, -1)))

d2l.plot([time, time[tau:], time[n_train + tau:]],
         [x.detach().numpy(), onestep_preds.detach().numpy(),
          multistep_preds[n_train + tau:].detach().numpy()], 'time',
         'x', legend=['data', '1-step preds', 'multistep preds'],
         xlim=[1, 1000], figsize=(6, 3))

结果:
在这里插入图片描述
预测不理想的原因是:预测误差不断累加。这种现象就像是24小时天气预报,超过24小时以后,精度会迅速下降。

总结

1、时序模型中,当前数据与之前观察到的数据相关
2、自回归模型使用自身过去数据预测未来
3、马尔可夫模型假设当前只跟最近少数数据相关,从而简化模型
4、潜变量模型使用潜变量来概括历史信息

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/62373.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VS2022程序集说明汉化

下载本地化的 .NET IntelliSense 文件 https://dotnet.microsoft.com/zh-cn/download/intellisense 目前本地化的 IntelliSense 文件不再可用。 可用的最新版本是 .NET 5。 建议使用英语 IntelliSense 文件。 .NET6的汉化需要自己动手: 教程可以参照下方&#xff1a…

Spring Cloud Alibaba (一)

1 微服务介绍 1.1 系统架构演变 随着互联网的发展,网站应用的规模也在不断的扩大,进而导致系统架构也在不断的进行变化。 从互联网早起到现在,系统架构大体经历了下面几个过程: 单体应用架构--->垂直应用架构--->分布 式架构--->S…

【数据结构OJ题】合并两个有序数组

原题链接:https://leetcode.cn/problems/merge-sorted-array/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 看到这道题,我们注意到nums1[ ]和nums2[ ]两个数组都是非递减的。所以我们很容易想到额外开一个数组tmp[ ]&#x…

vue整合脑图编辑管理系统-kitymind百度脑图

前言 项目为前端vue项目,把kitymind百度脑图整合到前端vue项目中,显示了脑图的绘制,编辑,到处为json,png,text等格式的功能 文章末尾有相关的代码链接,代码只包含前端项目,在原始的…

MySQL-NoSQL整体笔记---持续输出中

MySQL部分 一、搭建 MySQL 数据库服务器 1、下载并上传glibc版本的Mysql 2、新建用户以安全方式运行进程 [roottemplate ~]# groupadd -r -g 306 mysql [roottemplate ~]# useradd -g 306 -r -u 306 mysql3、安装并初始化mysql [roottemplate ~]# tar xf mysql-5.7.36-linu…

STM32 DMA学习

DMA简称 DMA,Direct Memory Access,即直接存储器访问。DMA传输方式无需CPU直接控制传输,也没有中断处理方式那样保留现场和恢复现场的过程,通过硬件为RAM与I/O设备开辟一条直接传送数据的通路,能使CPU的效率大为提高。…

K8s中的Ingress

1.把端口号对外暴露,通过ip端口号进行访问 使用Service里面的NodePort实现 2.NodePort缺陷 在每个节点上都会起到端口,在访问时候通过任何节点,通过节点ip暴露端口号实现访问 意味着每个端口只能使用一次,一个端口对应一个应用…

STM32刷Micropython固件参考指南

STM32刷Micropython固件指南 其实刷固件和普通的程序下载烧录无多大的差异,主要是其他因数的影响导致刷固件或刷完固件无法运行的情况和相关问题。 📑刷固件教程 固件下载。目前所支持的stm32型号有这些: stm32f0, stm32f4, stm32f7, stm32g…

[Docker实现测试部署CI/CD----Jenkins集成相关服务器(3)]

目录 7、 Jenkins 集成 SonarQubeJenkins 中安装 SonarScanner下载移动修改配置文件 8、Jenkins配置SonarQube安装插件添加SonarQube添加 SonarScanner 9、Jenkins集成目标服务器 7、 Jenkins 集成 SonarQube Jenkins 中安装 SonarScanner SonarScanner 是一种代码扫描工具&am…

基于springboot+vue的房屋租赁系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

MapReduce基础原理、MR与MPP区别

MapReduce概述 MapReduce(MR)本质上是一种用于数据处理的编程模型;MapReduce用于海量数据的计算,HDFS用于海量数据的存储(Hadoop Distributed File System,Hadoop分布式文件系统)。Hadoop MapR…

学编程实用网站

牛客网:面试刷题和面试经验分享的网站牛客网 - 找工作神器|笔试题库|面试经验|实习招聘内推,求职就业一站解决_牛客网 (nowcoder.com)https://www.nowcoder.com/ 慕课网:在线学习 慕课网-程序员的梦工厂 (imooc.com)https://www.imooc.com/ …

Vue-组件二次封装

本次对el-input进行简单封装进行演示 封装很简单,就给激活样式的边框(主要是功能) 本次封装主要使用到vue自带的几个对象 $attrs:获取绑定在组件上的所有属性$listeners: 获取绑定在组件上的所有函数方法$slots: 获取应用在组件内的所有插槽 …

【频率派和贝叶斯派】进阶学习-贝叶斯方法原理、基本结构、代码构建+图模型

文章目录 前言1.理论支撑贝叶斯思考模式贝叶斯定理贝叶斯公式 2. 应用转化2.1 拼写检查 3. 贝叶斯网络3.1 贝叶斯网络的定义3.2 三个形式和实际案例的构建关系 前言 频率派与贝叶斯派各自不同的思考方式: 1.频率派把需要推断的参数θ看做是固定的未知数&#xff0c…

亚马逊云科技七项生成式AI新产品生成式AI,为用户解决数据滞后等难题

7月27日,亚马逊云科技在纽约峰会上一连发布了七项生成式AI创新,涵盖了从底层硬件到工具、软件、再到生态的全方位更新,成为它在该领域迄今最全面的一次升级展示,同时也进一步降低了生成式AI的使用门槛。 亚马逊云科技凭借自身端到…

总结950

7:00起床 7:30~8:00复习单词300个,记忆100个 8:10~9:30数学660,只做了10道题,发现对各知识点的掌握程度不一。有些熟练,有些生疏 9:33~10:25计算机网络课程1h 10:32~12:02继续660,也不知道做了几道 2:32~4:00数据…

Cpp学习——string(2)

目录 ​编辑 容器string中的一些函数 1.capacity() 2.reserve() 3.resize() 4.push_back()与append() 5.find系列函数 容器string中的一些函数 1.capacity() capacity是string当中表示容量大小的函数。但是string开空间时是如何开的呢?现在就来看一下。先写…

常见猫咪种类

文章目录 中华田园猫猫图秀概况产地血统毛色特征形态特征性格特征近种区别饲养特点适养人群 英短猫图秀概况产地血统:毛色特征形态特征性格特征近种区别饲养特点适养人群 美短猫图秀概况产地血统毛色特征形态特征性格特征近种区别饲养特点适养人群 布偶猫猫图秀概况…

20天学会rust(一)和rust say hi

关注我,学习Rust不迷路 工欲善其事,必先利其器。第一节我们先来配置rust需要的环境和安装趁手的工具,然后写一个简单的小程序。 安装 Rust环境 Rust 官方有提供一个叫做 rustup 的工具,专门用于 rust 版本的管理,网…