6.s081/6.1810(Fall 2022)Lab2: System calls

文章目录

  • 前言
  • 其他篇章
  • 参考链接
  • 0. 前置准备
  • 1. System call tracing (moderate)
    • 1.1 简单分析
    • 1.2 Hint 1
    • 1.3 Hint 2
    • 1.4 Hint 3
    • 1.5 Hint 4
    • 1.6 Hint 5
    • 1.7 测试
  • 2. Sysinfo (moderate)
    • 2.1 声明
    • 2.2 实现
      • 2.2.1 框架
      • 2.2.2 用户态与内核态交互
      • 2.2.3 计算空闲内存的大小
      • 2.2.4 计算非UNUSED进程的数量
    • 2.3 测试
  • 3. 总测试

前言

这个lab主要介绍了用户态到内核态的系统调用做了什么,并让我们照猫画虎完成了两个系统调用的实现。

其他篇章

环境搭建
Lab1: Utilities
Lab2: System calls
Lab3: Page tables
Lab4: Traps

参考链接

官网链接
xv6手册链接,这个挺重要的,建议做lab之前最好读一读。
xv6手册中文版,这是几位先辈们的辛勤奉献来的呀!再习惯英文文档阅读我还是更喜欢中文一点,开源无敌!
OSTEP,对OS不熟悉的同学做之前可以看一下这本经典书籍,写得很好,也有中文版实体书。
个人代码仓库
官方文档

0. 前置准备

很惭愧,以前github用得少,这一步折腾了老半天,我再说一遍我个人的开发流程——先在windows下git一个本地仓库,然后用VS编辑,写完后git push上去,在WSL的对应地方git pull下来,然后编译运行。

前面环境配置中我为了连接到我个人的远程仓库,是直接把原本的远程仓库删了的,然后lab1做完做到lab2发现这个lab整体不是循序渐进的,而是彼此分离的,每个实验需要选择相应的分支,因此就要重新弄一下:

 git remote add base  git://g.csail.mit.edu/xv6-labs-2022
 git fetch base
 git checkout syscall
 git push --set-upstream origin syscall

当然,别忘了加.gitignore
在这里插入图片描述

1. System call tracing (moderate)

1.1 简单分析

gdb教学我就不说了,看看这个task。
在这里插入图片描述
先简单研究一下我们需求的这个trace是干什么的吧,trace顾名思义,tracing,追踪、寻迹的意思,比如ray tracing,就是光线追踪,这个命令接受一个传参mask,内涵是一个掩码,每一位对应一个系统调用的一个序号,比如传入32,代表 32 1<<SYS_read,2147483647 代表追踪所有syscall,具体的这些值定义在了kernel/syscall.h里,我们待会也会写
在这里插入图片描述
初步了解之后,就写实现吧,这个task按照hint的步骤来很清晰:
在这里插入图片描述

1.2 Hint 1

Add $U/_trace to UPROGS in Makefile

首先添加makefile,司空见惯了。

1.3 Hint 2

Run make qemu and you will see that the compiler cannot compile user/trace.c, because the user-space stubs for the system call don’t exist yet: add a prototype for the system call to user/user.h, a stub to user/usys.pl, and a syscall number to kernel/syscall.h. The Makefile invokes the perl script user/usys.pl, which produces user/usys.S, the actual system call stubs, which use the RISC-V ecall instruction to transition to the kernel. Once you fix the compilation issues, run trace 32 grep hello README; it will fail because you haven’t implemented the system call in the kernel yet.

然后说这个时候make,会找不到trace,我们要在用户态user/user.h里加上trace的声明,根据原文 It should take one argument, an integer “mask”, whose bits specify which system calls to trace. 可知,这玩意应该接受一个int,然后返回也是一个int(返回值其实不影响来着):
在这里插入图片描述
然后我们在user/usys.pl下添加这么一行,这是个Perl脚本,即使没有用过Perl的同学应该也能看出来这里的意思是声明了一个trace系统调用的入口,再通过上文展开为我们在usys.S中生成一段汇编代码。
在这里插入图片描述
然后在内核syscall.h中给它注册一个number
在这里插入图片描述

1.4 Hint 3

Add a sys_trace() function in kernel/sysproc.c that implements the new system call by remembering its argument in a new variable in the proc structure (see kernel/proc.h). The functions to retrieve system call arguments from user space are in kernel/syscall.c, and you can see examples of their use in kernel/sysproc.c.

然后模仿着添加原型?
在这里插入图片描述
这里简单解释一下后面这个syscalls数组,可能很多人没有看懂这,首先这是个static的不用说,然后这是个函数指针的数组(我一向很反感那些什么数组指针指针数组混着说的,直接说成装指针的数组不就一目了然了吗),函数返回值为uint64,参数为void,显然是为上面extern的那些函数准备的东西,这些都比较简单,后面的是个小feature了,它本身叫作指派初始化器(Designated Initializers),来自C99,意思就是给方括号里的那一位初始化为右边的值
在这里插入图片描述
但是可以看到,C99的指派初始化器的形式是[N] = expr的,中间需要一个等号连接,这里没有,它是来自GCC私货,原文出现在介绍指定初始化器的时候:An alternative syntax for this that has been obsolete since GCC 2.5 but GCC still accepts is to write ‘[index]’ before the element value, with no ‘=’. 意味着大家在自己使用时加个等号是更符合standard的写法。
在这里插入图片描述

然后叫我们仿照着kernel/sysproc.c里的其他函数给trace写一个定义进去:

uint64
sys_trace(void)
{
  
  return 0;
}

使用argint从寄存器取出用户传入的参数:

  int mask;
  argint(0, &mask); // 保存用户传入的参数

然后我们要把接到的这个mask保存到进程的元数据中,根据原文Add a sys_trace() function in kernel/sysproc.c that implements the new system call by remembering its argument in a new variable in the proc structure (see kernel/proc.h). T 我们在kernel/proc.h中可以找到一个结构体struct proc
在这里插入图片描述
很显然这个结构体记录着一些元数据,我们在这个基础上再添加一条承载mask的:

  int traceMask;               // 用于接收trace的mask

显然每一个进程都有一个独属于自己的proc对象,我们可以通过myproc()来获取这个对象的指针,就此我们可以完成我们的sys_trace定义:

uint64
sys_trace(void)
{
  argint(0, &myproc()->mask); // 尝试从用户空间读取参数
  return 0;
}

1.5 Hint 4

Modify fork() (see kernel/proc.c) to copy the trace mask from the parent to the child process.

我们知道fork出的子进程会复制父进程的内存空间,根据hint我们可以找到它的实现:
在这里插入图片描述
可以看到,这里明显是要做一个pnp的拷贝,p指向的是父进程的proc对象,np则应该是new proc的缩写了:
在这里插入图片描述
我们这个mask的修改不需要持有锁,因此只需要在alloc之后的合适时机将父进程的值赋出即可:
在这里插入图片描述
既然提到了alloc,这里刚好就可以想到一个问题——资源的分配与释放呢?我们知道C语言访问未初始化变量的行为是UB,那么我们默认状态下的mask进行初始化了吗?在上面那张图里我们可以清晰地看到(或者说猜到)内核依赖allocproc分配内存,依赖freeproc释放内存,因此我们可以直接F12进去看一看实现:
在这里插入图片描述
如图,我们可以很容易地为mask初始化以及释放时赋0值。

1.6 Hint 5

Modify the syscall() function in kernel/syscall.c to print the trace output. You will need to add an array of syscall names to index into.

然后我们为syscall这个总体的函数实现我们的功能,也就是前文中的那些打印:
在这里插入图片描述
我们分析一下需要做的事情:当我们进行了trace调用时,我们应当追踪mask标记的所有调用,并打印出4: syscall close -> 0这样的内容,不难看出,打印内容分为三部分:PID、系统调用的名称与系统调用的返回值,其中pid我们可以通过读取proc来获取,返回值实际在框架中都告诉你了:

    // and store its return value in p->trapframe->a0
    p->trapframe->a0 = syscalls[num]();

可以看到,系统调用的返回值被保存在了寄存器a0中,至于系统调用的名称呢?C语言中没有反射,我们就只好提前建立一张syscall的名称表,再根据mask去寻址:

// 系统调用的名称
static const char *syscallnames[] = {
[SYS_fork]    "fork",
[SYS_exit]    "exit",
[SYS_wait]    "wait",
[SYS_pipe]    "pipe",
[SYS_read]    "read",
[SYS_kill]    "kill",
[SYS_exec]    "exec",
[SYS_fstat]   "fstat",
[SYS_chdir]   "chdir",
[SYS_dup]     "dup",
[SYS_getpid]  "getpid",
[SYS_sbrk]    "sbrk",
[SYS_sleep]   "sleep",
[SYS_uptime]  "uptime",
[SYS_open]    "open",
[SYS_write]   "write",
[SYS_mknod]   "mknod",
[SYS_unlink]  "unlink",
[SYS_link]    "link",
[SYS_mkdir]   "mkdir",
[SYS_close]   "close",
[SYS_trace]   "trace",
};

搞清楚并完成了所有前置工作我们就可以开始写逻辑了,最后的syscall函数代码,很简单:

void
syscall(void)
{
  int num;
  struct proc *p = myproc();

  num = p->trapframe->a7;
  if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {
    // Use num to lookup the system call function for num, call it,
    // and store its return value in p->trapframe->a0
    p->trapframe->a0 = syscalls[num]();
    if ((p->mask >> num) & 1) { // 判断系统调用是否被跟踪
      printf("%d: syscall %s -> %d\n",
              p->pid, syscallnames[num], p->trapframe->a0);
    }
  } else {
    printf("%d %s: unknown sys call %d\n",
            p->pid, p->name, num);
    p->trapframe->a0 = -1;
  }
}

1.7 测试

到这里就基本完成了,还是老规矩,我们make qemu编译,然后试一试文档中的几个命令:

trace 32 grep hello README

在这里插入图片描述

trace 2147483647 grep hello README

在这里插入图片描述

grep hello README

trace 2 usertests forkforkfork # 这一条输入之后貌似要等一会才会出一大坨

在这里插入图片描述


在这里插入图片描述

最后跑一下总体批分./grade-lab-syscall trace
在这里插入图片描述
成功通过!

2. Sysinfo (moderate)

然后让我们来完成一下task2,这个是也是添加一个系统调用,叫sysinfo
在这里插入图片描述
我们先搞清楚这个调用是干啥的,从介绍可以看到,这个sysinfo接收一个struct sysinfo的指针,我们就是要写这个指针指向的对象,怎么写呢?就是将空闲的字节数存到对象里的freemem字段,将state不为UNUSED的进程数量写到nproc字段。

有一个初步的印象后就可以去写实现了,整体思路和上文trace的步骤差不多:

首先是增加$U/_sysinfotest\到Makefile:
在这里插入图片描述

2.1 声明

user/user.h里加声明:
在这里插入图片描述
syscall.h中:
在这里插入图片描述
syscall.c中(第三个是上面的那个名称表):
在这里插入图片描述

2.2 实现

2.2.1 框架

写完了声明,就可以写实现了,实现我们依旧写在sysproc.c下:

#include "sysinfo.h" // 由于要接收sysinfo类型的结构体,我们先include一下

uint64
sys_sysinfo(void)
{
  // TODO: 从用户态到内核态
  
  // TODO: 计算空闲内存的大小

  // TODO: 计算内存中非UNUSED的进程的数量

  // TODO: 从内核态到用户态
  return 0;
}

关于具体实现,文档提供了三个hint,我们还是按照这三个hint的步骤去做就行了:
在这里插入图片描述

2.2.2 用户态与内核态交互

sysinfo needs to copy a struct sysinfo back to user space; see sys_fstat() (kernel/sysfile.c) and filestat() (kernel/file.c) for examples of how to do that using copyout().

首先依旧是获取入参,hint给了我们两个参考范例,我们可以看一看:
在这里插入图片描述
在这里插入图片描述
可以看(猜)到,这两个文件以struct stat类型为例子,分别向我们展示了获取类型指针的方法以及将既存对象写入获取到的指针的方法,分别使用argaddrcopyout函数实现,因此我们可以依葫芦画瓢写出以下代码:

uint64
sys_sysinfo(void)
{
  uint64 addr; // 指向sysinfo结构体的指针
  struct sysinfo info;

  argaddr(0, &addr);  // 尝试从用户空间读取参数

  // TODO: 计算空闲内存的大小

  // TODO: 计算内存中非UNUSED的进程的数量

  if (copyout(myproc()->pagetable, addr, (char *)&info, sizeof(info)) < 0) // 将内核空间的sysinfo结构体复制到用户空间
    return -1;
    
  return 0;
}

2.2.3 计算空闲内存的大小

To collect the amount of free memory, add a function to kernel/kalloc.c

hint提示我们想要计算空闲内存的大小,需要在kalloc.c下添加一个函数,通过观察该文件的内容,我们不难发现,这个文件主要负责维护一个名为kmem的对象,这个名称应该是kernel memory的缩写,这个结构体内部有一个一看就是一把自旋锁的lock字段和一个一看就是负责记录空闲page的链表的freelist字段,通过综合观察我们可以知道freelist确实维护的是空闲页的数量,因此我们想要找到空闲内存的总大小,只需要遍历整个freelist,就可以找到总共空闲页的数量,而每个页有PGSIZE即4096个字节,因此我们只需要将获得的页面数乘以PGSIZE即可,于是不难写出以下代码:

// 计算空闲内存大小
uint64
kfree_mem_cnt(void)
{
  struct run *r;
  uint64 cnt = 0;

  acquire(&kmem.lock); // 由于kmem.freelist是全局变量,所以需要加锁
  r = kmem.freelist;
  while(r) {
    cnt++;
    r = r->next;
  }
  release(&kmem.lock);

  return cnt * PGSIZE;
}

值得一提的是,由于kmem是一个全局变量,属于临界资源,因此我们在访问时需要加锁。然后我们需要再kernel/defs.h下添加这个函数的声明,才能为我们所调用:
在这里插入图片描述
然后在我们的sysinfo中调用它:

uint64
sys_sysinfo(void)
{
  uint64 addr; // 指向sysinfo结构体的指针
  struct sysinfo info;

  argaddr(0, &addr);  // 尝试从用户空间读取参数

  info.freemem = kfree_mem_cnt(); // 获取内存中空闲的内存大小

  // TODO: 计算内存中非UNUSED的进程的数量

  if (copyout(myproc()->pagetable, addr, (char *)&info, sizeof(info)) < 0) // 将内核空间的sysinfo结构体复制到用户空间
    return -1;

  return 0;
}

2.2.4 计算非UNUSED进程的数量

To collect the number of processes, add a function to kernel/proc.c

这个函数提醒我们写在kernel/proc.c中,这个文件我们上一个task其实已经接触过了,再来看一看吧。前文我们已经知道了每个进程的信息依赖proc结构体维护,进一步阅读不难发现,这里用一个全局数组来维护了我们的所有进程,因此,我们只需要遍历一遍这个数组,然后给其中非空闲的进程计数即可。
在这里插入图片描述
同样值得一提的是,我们翻阅struct proc的定义可以发现,注释中提示了我们,state属于临界资源,访问需要加锁:
在这里插入图片描述
综合上面的内容,我们就可以比较轻松地写出如下代码:

// 计算非空闲进程的数量
uint64
get_free_proc_num(void)
{
  uint64 num = 0;
  for(struct proc* p = proc; p < &proc[NPROC]; p++){
    acquire(&p->lock);    // state是临界资源,需要加锁
    if (p->state != UNUSED)
      num++;
    release(&p->lock);
  }
  return num;
}

我们同样需要为它在defs.h中添加声明以供外部调用:
在这里插入图片描述
最后我们在sysinfo的实现中调用这个函数,完成了最终步骤:

uint64
sys_sysinfo(void)
{
  uint64 addr; // 指向sysinfo结构体的指针
  struct sysinfo info;

  argaddr(0, &addr);  // 尝试从用户空间读取参数

  info.freemem = kfree_mem_cnt(); // 获取内存中空闲的内存大小

  info.nproc = get_free_proc_num(); // 获取内存中非UNUSED的进程的数量

  if (copyout(myproc()->pagetable, addr, (char *)&info, sizeof(info)) < 0) // 将内核空间的sysinfo结构体复制到用户空间
    return -1;

  return 0;
}

2.3 测试

同样的,make qemu后,按照文档中的提示运行sysinfotest,成功:
在这里插入图片描述
退出终端后运行./grade-lab-syscall sysinfo本地测试,成功:
在这里插入图片描述

3. 总测试

同样的,我们需要在根目录下创建一个time.txt,里面写上本次lab用时,比如我这个lab不算写博客花了差不多4个小时,我就写个4,然后运行make grade(跑到这一步的时候我发现gdb也叫我填一个东西在answers-syscall.txt里,答案是usertrap()),弄好后又出了个错误:

Timeout! trace children: FAIL (30.7s)

8: syscall fork -> -1
7: syscall fork -> -1
6: syscall fork -> -1
9: syscall fork -> -1
qemu-system-riscv64: terminating on signal 15 from pid 6958 (make)
MISSING ‘^ALL TESTS PASSED’
QEMU output saved to xv6.out.trace_children

在这里插入图片描述
这个主要是由于WSL性能损失的原因,之前文档也强调过这个问题了,解决方法是自己手动改测试脚本gradelib.py,放宽时间(话说上面单独跑测试都25s过了,总的测试居然过不了,还得看运气呀):
在这里插入图片描述
然后再跑make grade
在这里插入图片描述
搞定!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/62201.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

postgresql表膨胀处理之pgcompacttable部署及使用

环境&#xff1a; 1&#xff09;redhat-release&#xff1a;CentOS Linux release 7.6.1810 (Core) 2&#xff09;database version&#xff1a;postgresql 14.6 一、添加pgstattuple pgcompacttable工具使用过程中需要依赖pgstattuple&#xff0c;因此需先添加pgstattuple…

工业控制系统安全控制应用指南

工业控制系统安全控制应用 指南 工业控制系统&#xff08;ICS&#xff09;&#xff08;包括监控和数据采集系统&#xff08;SCADA&#xff09;、分布式控制系统(DCS)、可编程逻辑控制器(PLC)等产品&#xff09;在核设施、航空航天、先进制造、石油石化、油气管网、电力系统、交…

Qt应用开发(基础篇)——时间类 QDateTime、QDate、QTime

一、前言 时间类QDateTime、QDate、QTime、QTimeZone保存了Qt的时间、日期、时区信息&#xff0c;常用的时间类部件都会用到这些数据结构&#xff0c;常用概念有年、月、日、时、分、秒、毫秒和时区&#xff0c;时间和时区就关系到时间戳和UTC的概念。 UTC时间&#xff0c;又称…

K8s中的核心技术Helm

1.helm的引入 &#xff08;1&#xff09;编写yaml文件 &#xff08;2&#xff09;编写deployment文件 &#xff08;3&#xff09;编写service文件 &#xff08;4&#xff09;编写Ingress文件 2.helm的引入解决的问题&#xff1f; &#xff08;1&#xff09;使用helm可以把…

oracle 存储过程返回 结果集 table形式 (使用sys_refcursor 及程序包package 两种方式)

1.创建一个表Test用来测试. 1 CREATE TABLE "TEST" 2 ( "AAA" NUMBER(*,0), 3 "BBB" VARCHAR2(10 BYTE) 4 ) 2.向Test表中插入测试数据 1 insert into Test values(1,a); 2 insert into Test values(2,b); 3 insert into Test …

Arthas协助MQ消费性能优化

背景 项目中使用AWS的SQS消息队列进行异步处理&#xff0c;QA通过压测发现单机TPS在23左右&#xff0c;目标性能在500TPS&#xff0c;所以需要对消费逻辑进行优化&#xff0c;提升消费速度。 目标 消费TPS从23提升到500 优化流程 优化的思路是先分析定位性能瓶颈&#xff…

AD21 PCB设计的高级应用(九)3D PDF的输出

&#xff08;九&#xff09;3D PDF的输出 1.3D PDF的输出2.制作PCB 3D视频 1.3D PDF的输出 Altium Designer 19 带有 3D输出功能,能够直接将 PCB 的 3D效果输出到 PDF 中。 ’(1)打开带有 3D 模型的 PCB 文件,执行菜单栏中“文件”→“导出”→“PDF3D”命令&#xff0c;选择…

“我,在腾讯月薪5万,离职后才明白:人越努力,只会越平庸”

那天看瑞达利欧说&#xff0c;他今年已经60岁了&#xff0c;可以说是阅人无数&#xff0c;但没有一个成功人士天赋异禀。 真的如他所说吗&#xff1f; 那张一鸣呢&#xff1f; 字节做到这么大&#xff0c;赚了这么多钱&#xff0c;不靠天赋&#xff0c;靠的是什么&#xff1…

PoseFormer:基于视频的2D-to-3D单人姿态估计

3D Human Pose Estimation with Spatial and Temporal Transformers论文解析 摘要1. 简介2. Related Works2.1 2D-to-3D Lifting HPE2.2 GNNs in 3D HPE2.3 Vision Transformers 3. Method3.1 Temporal Transformer Baseline3.2 PoseFormer: Spatial-Temporal TransformerSpati…

Grafana集成prometheus(2.Grafana安装)

查找镜像 docker search grafana下载指定版本 docker pull grafana/grafana:10.0.1启动容器脚本 docker run -d -p 3000:3000 --namegrafana grafana/grafana:10.0.1查看是否启动 docker ps防火墙开启 检查防火墙3000端口是否开启 默认用户及密码 admin/admin 登录 ht…

Python实现GA遗传算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 遗传算法&#xff08;Genetic Algorithm&#xff0c;GA&#xff09;最早是由美国的 John holland于20世…

【0805作业】Linux中 AB终端通过两根有名管道进行通信聊天(半双工)(全双工)

作业一&#xff1a;打开两个终端&#xff0c;要求实现AB进程对话【两根管道】 打开两个终端&#xff0c;要求实现AB进程对话 A进程先发送一句话给B进程&#xff0c;B进程接收后打印B进程再回复一句话给A进程&#xff0c;A进程接收后打印重复1.2步骤&#xff0c;当收到quit后&am…

【Docker】DockerFile

目录 一、镜像原理 二、如何制作镜像 1、容器转镜像 2、DockerFile 三、DockerFile关键字​编辑 四、案例&#xff1a;部署SpringBoot项目 一、镜像原理 docker镜像是由一个特殊的文件系统叠加而成的&#xff0c;他的最低端是bootfs&#xff0c;并使用宿主机的bootfs&…

FPGA优质开源项目 – PCIE通信

本文介绍一个FPGA开源项目&#xff1a;PCIE通信。该工程围绕Vivado软件中提供的PCIE通信IP核XDMA IP建立。Xilinx提供了XDMA的开源驱动程序&#xff0c;可在Windows系统或者Linux系统下使用&#xff0c;因此采用XDMA IP进行PCIE通信是比较简单直接的。 本文主要介绍一下XDMA I…

继承(Inheritance)

Odoo的一个强大方面是它的模块化。模块专用于业务需求&#xff0c;但模块也可以相互交互。这对于扩展现有模块的功能非常有用。例如&#xff0c;在我们的房地产场景中&#xff0c;我们希望在常规用户视图中直接显示销售人员的财产列表。 在介绍特定的Odoo模块继承之前&#xf…

卸载本机已安装的node.js(v.16.13.0版本)

因为要用多版本的node&#xff0c;准备安装一个nvm管理&#xff0c;所以需要先卸载掉原来安装的v.16.13.0版本。 记录一下卸载过程 1、在系统设置-应用里卸载node 妈蛋这样卸载报错。。找了下根本没有这个路径 那就只能最简单的方法了&#xff0c;全部删掉 1、删除node的安装…

pygame贪吃蛇游戏

pygame贪吃蛇游戏 贪吃蛇游戏通过enter键启动&#xff0c;贪吃蛇通过WSAD进行上下左右移动&#xff0c;每次在游戏区域中随机生成一个食物&#xff0c;每次吃完食物后&#xff0c;蛇变长并且获得积分&#xff1b;按空格键暂停。 贪吃蛇 import random, sys, time, pygame from …

[CKA]考试之PersistentVolumeClaims

由于最新的CKA考试改版&#xff0c;不允许存储书签&#xff0c;本博客致力怎么一步步从官网把答案找到&#xff0c;如何修改把题做对&#xff0c;下面开始我们的 CKA之旅 题目为&#xff1a; Task 创建一个名字为pv-volume的pvc&#xff0c;指定storageClass为csi-hostpath-…

大模型使用——超算上部署LLAMA-2-70B-Chat

大模型使用——超算上部署LLAMA-2-70B-Chat 前言 1、本机为Inspiron 5005&#xff0c;为64位&#xff0c;所用操作系统为Windos 10。超算的操作系统为基于Centos的linux&#xff0c;GPU配置为A100&#xff0c;所使用开发环境为Anaconda。 2、本教程主要实现了在超算上部署LLAM…

MySQL — InnoDB事务

文章目录 事务定义事务特性事务隔离级别READ UNCOMMITTEDREPEATABLE READREAD COMMITTEDSERIALIZABLE 事务存在的问题脏读&#xff08;Dirty Read&#xff09;不可重复读&#xff08;Non-repeatable Read&#xff09;幻读&#xff08;Phantom Read&#xff09; 事务定义 数据库…