MySQL语句性能分析与优化

目录

SQL性能分析

SQL执行频率

SQL慢查询日志

Profile

Explain

SQL优化

插入数据的优化

主键优化

Order By优化

Group By优化

Limit 优化

Count 优化

Update 优化

多表连接查询优化


SQL性能分析

通过SQL性能分析来做SQL的优化,主要是优化SQL的查询语句(其中索引的优化占主要部分)

SQL执行频率

通过以下命令来查看INSERT、UPDATE、DELETE、SELECT的访问频次(查看不同语句所占的比例)

根据不同语句的执行频率来进行不同的优化

SHOW SESSION/GLOBAL STATUS;    查看当前会话/全局服务器的状态信息

SHOW SESSION/GLOBAL STATUS LIKE ‘Com_______’      #(7个下划线)查看当前会话/全局的SQL增删改查的执行频率(就是从服务器的状态信息中提取关于增删改查的信息)

show global status like 'Com_______'; #查看全局的SQL语句插入、更新、删除、查询的执行频率

SQL慢查询日志

查看MySQL的慢查询日志的开关是否打开

SHOW VARIABLES LIKE 'slow_query_log';

慢查询日志的作用

通过慢查询日志可以定位到哪些查询语句需要进行优化

慢查询日志是记录了所有执行时间超过指定参数(long-query-time,默认10s)的SQL语句的日志(即:当SQL语句的执行时间超过10s,我们就会认为此语句是慢查询)

慢查询日志的路径

Linux系统关于MySQL慢查询日志

Linux关于MySQL的配置文件在/etc/my.cnf中

Linux中默认MySQL的慢日志查询没有开启,需要配置MySQL的配置文件中配置如下信息:

       #开启MySQL慢日志查询开关

       slow_query_log = 1

       #设置慢日志的时间为2s,SQL执行时间超过2s就会被视为慢查询

       log_query_time = 2

       #保存之后然后重启mysql服务

Linxu会自动生成相关的日志文件存放慢日志查询中记录的信息,存放的位置在/var/lib/mysql/localhost-slow.log中

Windows系统关于MySQL慢查询日志

Windows默认开启了慢查询日志的开关,可以在MySQL的配置问价查看慢查询日志信息

Windows关于MySQL的配置文件在C:\ProgramData\MySQL\MySQL Server 8.0\my.ini中(以下是关于慢查询日志的配置信息)

       slow-query-log=1       #开启MySQL慢日志查询开关

slow_query_log_file="慢查询日志的存放位置"  #指定慢查询日志文件的存放位置

long_query_time=10    #设置慢日志的时间为10s

如果还是找不到对应的慢查询日志的存储位置

可以通过show variables like 'slow_%'来查看

慢查询日志的格式

Time:执行SQL的时间

User@Host:通过哪个用户,在哪个主机上登录到此SQL的

Query_time:当前命令执行耗时的时间

Lock_time: 表锁的时间(InnoDB的行锁等待不会反应在这里)

Rows_sent: 返回多少行

Rows_examined:检查了多少行

USE:使用的哪个数据库

SET timestamp:执行SQL的时间戳

ApplicationName:此字段会注释掉,用于告知此用户是通过什么软件连接到数据库的(此处为DataGrip)

以及查询语句

如果Rows_examined很大,而Rows_sent很小,则说明此查询需要优化

Profile

通过Profile可以帮助我们了解SQL语句执行的时间都耗费到哪里去了(也会记录错误的语句)

查看当前MySQL是否支持profile操作以及是否启用了此操作

show variables like '%profil%';

在MySQL中开启Profile功能

set session/global profiling = True;

Window和Linux默认Profile是关闭的(不同的版本可能有区别)

Profile相关语句

SHOW PROFILES; #查看会话中每一条SQL的耗时基本情况(每条SQL语句都有唯一的query_id)

SHOW PROFILE FOR QUERY query_id;         #查看此query_id对应的SQL语句各个阶段的耗时情况

SHOW PROFILE CPU FOR QUERY query_id; #查看此query_id对应的SQL语句的CPU使用情况

Explain

前面的分析语句都是通过时间粗略分析;explan可以看到Sql语句的执行计划(如何执行select语句信息,select语句执行过程中如何连接以及连接的顺序),经常通过此判断SQL语句的性能

MySQL索引3——Explain关键字和索引优化(SQL提示、索引失效、索引使用规则)_静下心来敲木鱼的博客-CSDN博客


SQL优化

插入数据的优化

Inster 优化

1、当插入多条数据时使用批量插入

INSTER INTO 表名 VALUES(值1.1 , 值2.1),(值1.2 , 值2.2)……;

2、当要插入的数据超过百条时,建议使用事务来进行优化(手动提交事务,通过事务来优化)

START TRANSCANTION;

INSERT INTO 表名 VALUES(值1.1 , 值2.1),(值1.2 , 值2.2)……;

INSERT INTO 表名 VALUES(值1.100, 值2.100),(值1. 101, 值2.101)……;

COMMIT;

3、当要大批量的插入数据时,使用INSTER语句插入性能低,可以使用MySQL提供的LOAD进行进行插入(将符合一定规则的文件直接导入到Mysql生成相应的表)

  1. 客户端连接MySQL时加上参数--local-infile;表示当前客户端连接服务端时,需要加载客户端本地文件

mysql --local-infile -u root -p

     2、设置全局参数local_infile为1;表示开启从本地加载文件导入数据的开关

       show variables like '%infile%';       #查看是否开启load开关

set global local_infile=1;            #开启load开关

     3、执行load指令将准备好的本地文件中的数据加载到表结构中

       load data local infile ‘本地文件的路径’  into table 表名  fields terminated by ‘每个字段对应值的分隔符’ lines terminated by ‘每一行数据的分隔符’;

建议分隔符都使用英文符号

模拟load插入

员工信息.txt文件(路径为C:/Users/123/Desktop/员工信息.txt)

创建user123表

create table User123(
 
id int auto_increment primary key,
 
name varchar(10),
 
age int,
 
origo varchar(10)
)
;

将.txt文件导入表中

load data local infile 'C:/Users/Tdemo/Desktop/员工信息.txt' into table user123 fields terminated by ',' lines terminated by ';';

此时查看表的数据

select * from user123;

主键优化

在对主键进行插入数据时,顺序插入性能高于乱序插入

InnoDB关于主键的数据组织方式

表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT),我们再进行主键存放时就是根据顺序存放的

页分裂——乱序插入可能出现

页时InnoDB磁盘管理的最小单元,一个页的大小默认为16k,叶子节是有序的

每个页包含了2-N行数据(如果一行数据过大,就会行溢出)

页可以为空、也可以填充一半、也可以填充100%

主键顺序插入

主键乱序插入——可能会出现页分裂

50找到要插入的位置在第1个页的末尾;

发现此时第1页没有空间进行插入,此时会新建1个页;

然后找到第1个页的中间位置,将其右边的数据都迁移到新建的页中,然后再将50添加到新建的页中

此时再对三个页重新排序(需要消耗较多的性能)

页合并

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除;并且它的空间变得允许被其它记录声明使用

当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间

Merge_threshold 合并页的阈值,可以自己设置(在创建表或索引时指定)

主键设计原则

1、满足业务需求的情况下,尽量降低主键的长度(此操作可以降低二级索引占用的空间)

2、插入数据时,建议主键进行顺序插入;可以使用AUTO_INCREMENT自增主键

3、尽量不要使用无序的值来作为主键,导致插入主键时可能乱序,在检索时也会耗费大量的IO

4、在进行业务操作时,尽量避免对主键的修改

Order By优化

进行排序时通过Explain显示的Extra字段的内容类型如果为Using Filsort,则需要进行优化,尽量将其优化为Using Index(通过满足覆盖索引实现)

Using Filesort和Index讲解

1、Using Filesort:通过表的索引或者全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作;所有不是通过索引直接返回排序结果的排序都叫FileSort排序

2、Using Index:查找使用了索引,并且通过索引可以接返回有序的数据,不需要额外排序,操作效率高

3、Backward index scan:反向扫描索引,进行降序排序时会出现;也是单独子啊排序缓冲区完成排序操作;需要进行优化

如何优化Backward index scan

在创建索引时,MySQL8之前的版本默认只是针对升序创建了索引;我们可以额外对字段创建关于降序的索引

格式如下(在字段后面跟上排序方式)

create index 索引名 on 表名(字段1 asc , 字段2 desc);

为字段1创建升序索引,为字段2创建倒序索引

总结

1、当创建联合索引后,在进行排序时如果一部分按照升序排序,一部分按照降序排序,则会产生using filesort;此时可以为此单独再创建索引

2、在使用索引时尽量实现覆盖索引

3、在使用是要避免索引失效

4、如果不可避免的出现filesort,在大数据排序时,可以适当增大排序缓冲区的大小sort_buffer_size(默认256k)

5、Show variables like ‘sort_buffer_size’;  #查看排序缓冲区的大小;当排序缓冲区占满之后会占用磁盘进行排序

Group By优化

主要研究索引对分组查询的影响,思路和排序优化是一致的

进行分组时通过Explain显示的Extra字段的内容类型如果为Using Temporary,则需要进行优化,尽量将其优化为Using Index(通过满足覆盖索引实现)

Using Temporary讲解

Using temporary:查找使用到了临时表,性能比较低

总结

1、在分组操作时可以通过索引来提高效率

2、在分组操作时,索引的使用也是满足最左前缀法则的

3、在分组操作时,尽量实现覆盖索引,避免回表查询

4、在分组操作时,避免索引失效

Limit 优化

在大数据量情况下,越往后分页,耗时越长,可能也会造成资源浪费

当我们查询limit 10000,10时,我们需要排序MySQL前10010条记录,但是只范围10000-10010之间的10条记录,其它记录丢弃,此时查询的代价就很大(排序是为了保证每次通过limit查到的记录都一样)

可以通过覆盖索引+子查询的方式优化

通过子查询找到10000-10010对应数据的主键值,然后再通过主键值来查找对应的数据

需要注意有些版本Mysql不支持在in之后使用子查询的语法,所以以下的语句无法实现

Select * from 表名 where 主键值 in (select 主键值 from 表名 order by limit 10000,10);

方式二 我们可以将子查询的结果看作一张表,通过多表查询来实现

Select a.* from 表1 a, (select 主键值 from 表1 order by limit 10000,10)  b where a.主键值=b.主键值;

Count 优化

不同存储引擎对于Count(*)的不同处理方式

MyISAM引擎中会把一个表的总行数存在磁盘上,因此执行count(*)的时候才会直接返回这个数,效率很高(前提是查询时没有where条件)

InnoDB引擎在执行count()*时,需要把遍历整张表,把数据一行一行地从引擎里面读出来,然后积累计数(如果为Null则不加1,如果为非Null值则计数加1),最后将积累的计数输出(无论是否有where条件,InnoDB都是这样操作的)

Count的不同用法以及性能差异

Count的主要用法有count(*)、count(主键)、count(字段)、count(X)

Count(主键)   ——主键的总记录行数

会遍历整张表,把每一行的主键值提取出来返回给服务层,服务层拿到主键后直接按照行数进行累加(不进行判断是否为Null)

Count(字段)   ——统计此字段有多少值不为Null,不一定是总记录数

分为加了Not Null约束和没有加Null约束两种情况

没有加Not Null约束:需要判断值是否为Null

把每一行的字段对应的值提取出来返回给服务层,服务层判断是否为Null,如果为Null则不加1,如果为非Null值则计数加1

加了Not Null约束:不需要判断是否为Null

把每一行的字段对应的值提取出来返回给服务层,服务层进行累加

Count(x) ——x为数字,查询表的总记录行数

InnoDB会遍历整张表,不过不会进行取值;服务层对于返回的每一行放一个数字x进去,直接按照行进行累加

Count(*) ——表当中的总记录行数

Mysql对InnoDB引擎做了优化,InnoDB引擎在执行count()*时,需要把遍历整张表,不过不会进行取值,直接按照行数进行累加,最后将积累的计数输出;底层count(*)=count(0)

性能比较

Count(*) ≈ Count(x) > Count(主键) > Count(字段)

尽量使用Count(*)

如何优化InnoDB引擎对Count关键字的处理

没有较好的优化策略,想要优化的话可以在插入数据或删除数据时自行计数,只不过比较繁琐

Update 优化

对于InnoDB引擎来说,默认事务隔离级别是通过行锁实现的;并且该行锁是针对索引加的锁,不是针对记录加的锁;如果该索引失效了,则会从行锁升级为表锁

即:对于建立了索引的字段使用的是行锁;没有建立索引的字段使用的是表锁;一旦锁表,就会降低并发操作

因此,优化建议为

1、使用Update时使用索引列作为更新条件,避免表锁

2、避免出现索引失效,将行锁升级为表锁

多表连接查询优化

内连接时,Mysql会自动把输出结果小的表选为驱动表,所以大表(输出结果多的表)的字段最好加上索引

左外连接时,左表会全表查询(不可避免地,因为要显示左表的全部数据),建议右边表的字段最好加上索引

右外连接时,右表会全表查询,建议左边表的字段最好加上索引

优化手段

1、在外连接时,尽量将小表作为驱动表,并保证被驱动表上的字段建立了索引

3、内连接时,尽量将大表的字段加上索引

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/62125.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java中javamail发送带附件的邮件实现方法

java中javamail发送带附件的邮件实现方法 本文实例讲述了java中javamail发送带附件的邮件实现方法。分享给大家供大家参考。具体分析如下: JavaMail,顾名思义,提供给开发者处理电子邮件相关的编程接口。它是Sun发布的用来处理email的API。它…

Java-day06(面向对象-2)

面向对象 参数 参数分为形参(方法声明时的参数)与实参(方法调用时实际传给形参的参数值) 将对象作为参数传递给方法 (1)定义一个Circle类,包含一个double型是r属性代表圆的半径,一个findArea()方法返回圆的面积。 …

static关键字

作者简介: zoro-1,目前大一,正在学习Java,数据结构等 作者主页: zoro-1的主页 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖💖 被static修饰意味什么 在Java中,被st…

ld加上-static -lc参数报错`ld: cannot find -lc`处理方法

cat /etc/redhat-release看到操作系统是CentOS Linux release 7.6.1810,uname -r看到内核版本是3.10.0-957.el7.x86_64,as --version看到as的版本是2.27-34.base.el7,ld --version看到ld的版本是2.27-34.base.el7。 absCallWithStart.s里边…

33.利用abs 解决绝对值问题(matlab程序 )

1.简述 abs函数的功能是绝对值和复数的模 语法 Y abs(X) 说明 Y abs(X) 返回数组 X 中每个元素的绝对值。如果 X 是复数,则 abs(X) 返回复数的模。 示例 标量的绝对值 y abs(-5) y 5 向量的绝对值 创建实值的数值向量。 x [1.3 -3.56 8.23 -5 -0.01…

MacOS上用docker运行mongo及mongo-express

MongoDB简介 MongoDB 是一个基于分布式文件存储的数据库。由 C 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。 MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。 前提 要求…

ChatGPT: 人机交互的未来

ChatGPT: 人机交互的未来 ChatGPT背景ChatGPT的特点ChatGPT的应用场景结论 ChatGPT ChatGPT是一种基于大数据和机器学习的人工智能聊天机器人模型。它由国内团队发明、开发,并被命名为Mental AI。ChatGPT的目标是通过模拟自然对话的方式,提供高效、智能…

vscode中无法使用git解决方案

1 首先查看git安装目录 where git 2 找到bash.exe 的路径 比如:C:/Users/Wangzd/AppData/Local/Programs/Git/bin/bash 3 找到vscode的配置项setting.json 4 添加 "terminal.integrated.shell.windowns": "C:/Users/Wangzd/AppData/Local/Pr…

SpringBoot中Redis报错:NOAUTH Authentication required

1、问题 org.springframework.dao.InvalidDataAccessApiUsageException: NOAUTH Authentication required.; nested exception is redis.clients.jedis.exceptions.JedisDataException: NOAUTH Authentication required. … 2、解决 如果提供了密码还没解决,那可能是…

【剑指Offer 06】从尾到头打印链表,Java解密。

LeetCode 剑指Offer 75道练习题 文章目录 剑指Offer:从尾到头打印链表示例:限制:解题思路: 剑指Offer:从尾到头打印链表 【题目描述】 输入一个链表的头节点,从尾到头反过来返回每个节点的值(用…

2023华数杯数学建模竞赛选题建议

提示&#xff1a;DS C君认为的难度&#xff1a;C<B<A&#xff0c;开放度&#xff1a;B<A<C 。 A题&#xff1a;隔热材料的结构优化控制研究 A题是数模类赛事很常见的物理类赛题&#xff0c;需要学习不少相关知识。 其中第一问需要建立平纹织物整体热导率与单根纤…

K8S系列文章之 开源的堡垒机 jumpserver

一、jumpserver作为一款开源的堡垒机&#xff0c;不管是企业还是个人&#xff0c;我觉得都是比较合适的&#xff0c;而且使用也比较简单。 二、这里记录一下安装和使用过程。 1、安装&#xff0c;直接docker不是就行 version: 3 services:xbd-mysql:image: mysql:8.0.19restart…

通过C语言设计的贪吃蛇游戏(控制台终端)

一、项目介绍 当前通过控制台终端实现一个贪吃蛇小游戏&#xff0c;实现游戏的绘制、更新、控制等功能。 二、实现效果 三、完整代码 下面贴出的代码在Windows系统上编译运行&#xff0c;需要使用conio.h头文件中的getch()函数来获取键盘输入&#xff0c;用于控制蛇的移动。…

word转pdf两种方式(免费+收费)

一、免费方式 优点&#xff1a;1、免费&#xff1b;2、在众多免费中挑选出的转换效果相对较好&#xff0c;并且不用像openOffice那样安装服务 缺点&#xff1a;1、对字体支持没有很好&#xff0c;需要安装字体库或者使用宋体&#xff08;对宋体支持很好&#xff09;2、对于使…

如何使用大模型处理生活繁琐的工作

如果每封电子邮件、每个带有订单、发票、投诉、录用请求或工作申请的 PDF 都可以翻译成机器可读的数据&#xff0c;会怎样&#xff1f;然后可以由 ERP / CRM / LMS / TMS 自动处理吗&#xff1f;无需编程特殊接口。 听起来很神奇&#xff1f;它确实有一些魔力。但最近已成为可…

PtahDAO:全球首个DAO治理资产信托计划的金融平台

金融科技是当今世界最具创新力和影响力的领域之一&#xff0c;区块链技术作为金融科技的核心驱动力&#xff0c;正在颠覆传统的金融模式&#xff0c;为全球用户提供更加普惠、便捷、安全的金融服务。在这个变革的浪潮中&#xff0c;PtahDAO&#xff08;普塔道&#xff09;作为全…

系列二、IOC基本概念和底层原理

一、IOC基本概念 控制反转&#xff1a;把对象创建和对象之间的调用过程&#xff0c;交给Spring进行管理&#xff1b;使用IOC的目的&#xff1a;减低耦合度&#xff1b; 二、IOC底层原理 xml解析 工厂模式 反射 2.1、图解IOC底层原理 # 第一步&#xff1a;xml配置文件&am…

K8s的详细介绍

1.编写yaml文件的方式 2.yaml里面的内容介绍 Pod实现机制&#xff1a;&#xff08;1&#xff09;共享网络&#xff08;2&#xff09;共享存储 共享网络:通过Pause容器&#xff0c;把其他业务容器加入到Pause容器里面&#xff0c;让所有业务容器在同一个名称空间中&#xff0c;…

【CHI】(六)独占访问

AMBA5 CHI Architecture Specification IssueF 1. overview 独占访问的原则是&#xff0c;执行独占序列的逻辑处理器&#xff08;LP&#xff09;执行以下操作&#xff1a; 对一个地址执行exclusive load。计算要存储到该位置的新值。对该地址进行exclusive store。 支持对可…

mysql-数据库-创建列表

一.创建列表 1..首先&#xff0c;进入mysql数据库 -->mysql -uroot -p 2. 其次&#xff0c;mysql默认的数据库类型为mydb&#xff0c;这时候&#xff0c;就得查看现在使用的类型 mysql> select database(); 3. 如果创建的类型不同&#xff0c;则使用create database …