深度学习技术之加宽前馈全连接神经网络

深度学习技术

  • 加宽前馈全连接神经网络
    • 1. Functional API 搭建神经网络模型
      • 1.1 利用Functional API编写宽深神经网络模型进行手写数字识别
        • 1.1.1 导入需要的库
        • 1.1.2 加载虹膜(Iris)数据集
        • 1.1.3 分割训练集和测试集
        • 1.1.4 定义模型输入层
        • 1.1.5 添加隐藏层
        • 1.1.6 拼接输入层和第二个隐藏层
        • 1.1.7 添加输出层
        • 1.1.8 创建模型
        • 1.1.9 打印模型的摘要
        • 1.1.10 模型编译并训练
      • 1.2 利用Functional API编写多输入神经网络模型进行手写数字识别
        • 1.2.1 分割子集
        • 1.2.2 定义输入层
        • 1.2.3 定义全连接层
        • 1.2.4 创建模型
        • 1.2.5 编译与训练模型
        • 1.2.6 训练历史数据的可视化
    • 2. SubClassing API 搭建神经网络模型
      • 2.1 前馈全连接神经网络手写数字识别
        • 2.1.1 定义一个Keras模型类
        • 2.1.2 定义方法
        • 2.1.3 初始化模型
        • 2.1.4 通过在初始化中传递参数改变模型元素默认值
        • 2.1.5 编译与训练模型
        • 2.1.6 打印模型摘要

加宽前馈全连接神经网络

1. Functional API 搭建神经网络模型

1.1 利用Functional API编写宽深神经网络模型进行手写数字识别

1.1.1 导入需要的库

利用Sequential API建立一个顺序传播的前馈全连接神经网络,导入numpy、pandas,tensorflow等库,以及导入matplotlib的pyplot模块。从sklearn库的datasets模块中导入load_iris函数,以及从sklearn库的model_selection模块中导入train_test_split函数。从TensorFlow库中导入Keras模块。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow import keras
1.1.2 加载虹膜(Iris)数据集

虹膜(Iris)数据集是scikit-learn库中内置的一个样本数据集,它包含了150个样本,分为三个类,每个类有50个样本。这三个类分别是山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)。

iris = load_iris()
1.1.3 分割训练集和测试集

将虹膜(Iris)数据集分割为训练集和测试集,得到训练集x_train和y_train,再将分割得到的训练集x_train和y_train分割为新的训练集和验证集。

x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target, test_size=0.2, random_state=23)
X_train, X_valid, y_train, y_valid=train_test_split(x_train, y_train,test_size=0.2, random_state=12)
1.1.4 定义模型输入层

使用X_train.shape[1:]作为输入层的形状,因为X_train.shape[0]是批量大小,通常在训练过程中改变,而X_train.shape[1:]包含了特征的数量,这些数量在训练过程中保持不变。

inputs = keras.layers.Input(shape=X_train.shape[1:])
1.1.5 添加隐藏层

隐藏层,包含神经元,并使用ReLU激活函数。

hidden1 = keras.layers.Dense(300, activation="relu")(inputs)
hidden2 = keras.layers.Dense(100, activation="relu")(hidden1)
1.1.6 拼接输入层和第二个隐藏层

将输入层和第二个隐藏层的输出进行拼接,得到一个融合了输入和中间层信息的特征向量。

concat = keras.layers.concatenate([inputs, hidden2])
1.1.7 添加输出层

添加了一个输出层,包含10个神经元,使用softmax激活函数,因为模型是用于多类分类任务。

output = keras.layers.Dense(10, activation="softmax")(concat)
1.1.8 创建模型

创建了一个完整的模型,将输入层和输出层连接起来,形成了一个有监督学习的模型结构。
这个模型结构结合了“宽”模型(wide model)和“深”模型(deep model)的特点,通过输入层和隐藏层的拼接来融合这两种模型。

model_fun_WideDeep = keras.models.Model(inputs=[inputs], outputs=[output])

运行结果:
在这里插入图片描述

1.1.9 打印模型的摘要
model_fun_WideDeep.summary()
1.1.10 模型编译并训练

model_fun_WideDeep.fit()方法将开始模型的训练过程,并在每个轮次结束后使用验证数据评估模型的性能。训练过程中,模型将逐渐学习如何将输入特征映射到正确的输出类别。

model_fun_WideDeep.compile(loss="sparse_categorical_crossentropy",optimizer="sgd",metrics=["accuracy"])
h=model_fun_WideDeep.fit(X_train, y_train, batch_size=32, epochs=30, validation_data=(X_valid, y_valid))

运行结果:
在这里插入图片描述

1.2 利用Functional API编写多输入神经网络模型进行手写数字识别

1.2.1 分割子集

将训练集X_train和验证集X_valid分割为两个子集。

X_train_A, X_train_B = X_train[:, :200], X_train[:, 100:]
X_valid_A, X_valid_B = X_valid[:, :200], X_valid[:, 100:]
1.2.2 定义输入层
input_A = keras.layers.Input(shape=X_train_A.shape[1])
input_B = keras.layers.Input(shape=X_train_B.shape[1])
1.2.3 定义全连接层
hidden1 = keras.layers.Dense(300, activation="relu")(input_B)
hidden2 = keras.layers.Dense(100, activation="relu")(hiddenl)
1.2.4 创建模型

将输入层和输出层连接起来。

model_fun_MulIn = keras.models.Model(inputs=[input_A, input_B], outputs=[output])
1.2.5 编译与训练模型

在训练过程中,模型将使用指定的损失函数和优化器来更新权重,并使用准确率作为评估指标来监控性能。

model_fun_MulIn.compile(loss="sparse_categorical_crossentropy",optimizer="sgd",metrics=["accuracy"])

运行结果:
在这里插入图片描述

1.2.6 训练历史数据的可视化

图中显示了训练和验证集上的损失和准确率随轮次的变化情况。

pd.DataFrame(h.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()

运行结果:
在这里插入图片描述

2. SubClassing API 搭建神经网络模型

2.1 前馈全连接神经网络手写数字识别

2.1.1 定义一个Keras模型类

定义一个自定义的Keras模型类Model_sub_fnn,继承自keras.models.Model。这个类定义了一个简单的全连接神经网络,它有两个隐藏层和一个输出层。

class Model_sub_fnn(keras.models.Model):
    def __init__(self, units_1=300, units_2=100, units_out=10, activation='relu'):
        super().__init__()
        self.hidden1 = keras.layers.Dense(units_1, activation=activation)
        self.hidden2 = keras.layers.Dense(units_2, activation=activation)
        self.main_output = keras.layers.Dense(units_out, activation='softmax')
2.1.2 定义方法

给Model_sub_fnn类定义一个call方法。这个方法是Keras模型中的一个特殊方法,它定义了模型的前向传播过程,它将输入数据通过模型的所有层,并返回最终的输出。

def call(self, data):
    hidden1 = self.hidden1(data)
    hidden2 = self.hidden2(hidden1)
    main_output = self.main_output(hidden2)
    return main_output
2.1.3 初始化模型
model_sub_fnn = Model_sub_fnn()
2.1.4 通过在初始化中传递参数改变模型元素默认值
model_sub_fnn2 = Model_sub_fnn(300, 100, 10, activation='relu')
2.1.5 编译与训练模型

编译模型,使用训练数据和验证数据进行训练。在训练过程中,模型将使用指定的损失函数和优化器来更新权重,并使用准确率作为评估指标来监控性能。训练完成后,将得到模型的摘要,其中包含了模型的详细信息。

model_sub_fnn.compile(loss='sparse_categorical_crossentropy',optimizer='sgd',metrics=["accuracy")
h= model_sub_fnn.fit(X_train,y_train,batch_size=32,epochs=30,validation_data = (X_valid,y_valid))

运行结果:
在这里插入图片描述

2.1.6 打印模型摘要

打印出模型的摘要,其中包括模型的层结构、每个层的输出形状、层的参数数量以及整个模型的总参数数量。

model_sub_fnn.summary()

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/620378.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux基础之进程-fork()函数的详解

目录 一、前言 二、fork()函数 2.1 fork()函数的基本概念 2.2 问题一的解答 2.3 问题二的解答 2.4 问题三的解答 2.5 问题四的解答 2.6 问题五的解答 一、前言 在上节内容中我们已经学会了使用我们的getpid()和我们的getppid()去查看我们进程的pid,并且学习到…

dockerFile制作镜像、并远程发布

1、FORM 用于指定基础镜像,也就是在指定的镜像上,增加上后续dockerFIle中设置的内容(新的软件、新的服务等) FROM openjdk:8-jre 在这个容器中,就能直接使用java命令。 2、ENV 用于设置环境变量,在后续的R…

Android Compose 一:基础控件

Flutter 与 Compose 组件辣么像,难道是同一个google团队整的;也未深究,只是猜测。 创建项目 需要使用新版本Android studio,忽略步骤… 项目目录 MainActivity说明 1 系统默认页面 Preview 修饰的方法,只用来供开发…

物联网实战--平台篇之(七)应用界面设计

目录 一、米家APP分析 二、应用展示 三、应用列表 四、新建应用 五、重命名应用 本项目的交流QQ群:701889554 物联网实战--入门篇https://blog.csdn.net/ypp240124016/category_12609773.html 物联网实战--驱动篇https://blog.csdn.net/ypp240124016/category_12631333.…

快速配置 Nginx 来实现 GPT 流式传输

目录 1. Nginx 参考配置2. Nginx 核心参数3. 其他参数 场景:代理 ChatGPT、代理各种 GPT 工具套壳等。 1. Nginx 参考配置 支持 GPT 流式访问的配置如下,请根据实际需求适当取舍即可: server {listen 80;server_name chat.test.com; # 绑…

PCIE协议-2-事务层规范-Message Request Rules-Vendor_Defined Messages

2.2.8.6 厂商定义消息 厂商定义消息允许扩展PCI Express消息功能,可以作为PCI Express规范的一般扩展,也可以是厂商特定的扩展。本节通用地定义了与这些消息相关的规则。 厂商定义消息(见表2-25)使用图2-28中显示的头标格式。re…

Nios实验使用串口输出“Hello Nios-II”字符到笔记本电脑

目录 实验过程 创建工程 修改程序 编译工程 运行项目 效果实现 总结 参考 实验过程 硬件设计见博主上篇博客 软件部分设计 下面使用 Nios II Software Build Tools for Eclipse 来完成当前项目的软件开发。 启动 Nios II SBT 按照下图所示点击 Nios II Software Build…

计算机网络复习-传输层

概念 传输层是进程与进程之间的通信使用端口(Port)来标记不同的网络进程端口(Port)使用16比特位表示(0~65535) UDP协议详解 UDP:用户数据报协议数据报:应用层传输过来的一个完整的数据不合并,不拆分 UDP的头部 UDP特点 UDP是无连接协…

【R语言篇】医学生福音,全球疾病负担数据库GBD 2021即将更新!!!

今天介绍即将于5月16日更新的全球疾病负担数据库GBD 2021,相信数据一经发表,过不了多久pubmed又将涌现一大波疾病负担相关文章。 Global Burden of Disease Study 2021 (GBD 2021) Data Resources | GHDx 在查找GBD相关文献方面,我个人还是比…

PS的文字点阵 文字边缘虚 为什么在Ps中打出来的字是带有锯齿状模糊的?

此方法主要针对低像素文字 关键部分 (4 封私信 / 80 条消息) 为什么在Ps中打出来的字是带有锯齿状模糊的? - 知乎 (zhihu.com)https://www.zhihu.com/question/54412515

【牛客】SQL211 获取当前薪水第二多的员工的emp_no以及其对应的薪水salary

1、描述 有一个薪水表salaries简况如下: 请你获取薪水第二多的员工的emp_no以及其对应的薪水salary, 若有多个员工的薪水为第二多的薪水,则将对应的员工的emp_no和salary全部输出,并按emp_no升序排序。 2、题目建表 drop table …

8个手机宝藏App,建议收藏!

AI故事视频生成,一站式生成小说漫画推文、儿童故事、民间故事等https://aitools.jurilu.com/ 1.地图车机版——百度地图 百度地图,作为新一代的人工智能地图,以其智能语音、智能导航系统、智能路线规划和智能推荐方案而著称。它不仅提供传统…

MATLAB模拟退火算法、遗传算法、蚁群算法、粒子群算法

概况 模拟退火算法、遗传算法、蚁群算法、粒子群算法等算法,都是属于概率算法,不绝对,不迅速,能用其它方式解决的问题,不要用这些相对复杂的算法,比如有明确的线性关系或者非线性对应关系。这里的概率算法…

IP跳变是什么,有什么作用?

IP跳变,简单来说,就是用户在使用网络时,不固定使用一个IP地址,而是定期或根据需求切换到另一个IP地址。这种技术为用户在网络环境中提供了一定的灵活性和安全性。 首先,我们来看看IP跳变的具体实现方式。当用户需要切…

CUDA-均值滤波算法

作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 实现原理 均值滤波是一种常见的图像处理方法,用于去除图像中的噪声。其原理很简单:对图像中的每个像素&a…

高频电源模块TL22010-T2整流模块TL22010-T3用途

直流屏充电模块TL22010-T2电源模块TL22010-T3,整流模块TL11010-T3,其他TL系列型号有:TL11020-T3,TL11010-T2,TL11020-T2,TL22010-T,TL-22010-T,TL-11010-T,TL-22005-T&am…

排序-选择排序(selection sort)

选择排序(selection sort)的工作原理非常简单:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。选择排序的主要特点包括: 时间复杂度: 无论最好、最坏还是平均情况&…

【图像增强(空域)】基于灰度变换的图像增强及Matlab仿真

1. 摘要: 空域内的图像增强就是调整灰度图像的明暗对比度,对图像中各个像素的灰度值直接进行处理。常用的方法包括:灰度变换增强和直方图增强。 2. 原理: 灰度变换增强是空域ne对图像进行增强的一种简单且直接的方法。灰度变换…

26版SPSS操作教程(高级教程第二十章)

目录 前言 粉丝及官方意见说明 第二十章一些学习笔记 第二十章一些操作方法 神经网络与支持向量机 人工神经网络(artificial neural network,ANN) 假设数据 具体操作 结果解释 对案例的进一步分析 结果解释 ​编辑 尝试将模型复…

Pikachu 靶场 XXE 通关解析

前言 Pikachu靶场是一种常见的网络安全训练平台,用于模拟真实世界中的网络攻击和防御场景。它提供了一系列的实验室环境,供安全专业人士、学生和爱好者练习和测试他们的技能。 Pikachu靶场的目的是帮助用户了解和掌握网络攻击的原理和技术,…