YOLOv5-7.0改进(二)BiFPN替换Neck网络

前言

针对红绿灯轻量化检测,上一节使用MobileNetv3替换了主干网络,本篇将在使用BiFPN替换Neck的方式优化算法~

往期回顾

YOLOv5-7.0改进(一)MobileNetv3替换主干网络

目录

  • 一、BiFPN简介
  • 二、改进方法一
    • 第一步:在common.py中添加BiFPN模块
    • 第二步:在yolo.py中的parse_model函数加入类名
    • 第三步:制作模型配置文件
    • 第四步:验证新加入的BiFPN
    • 第五步:修改train.py中的cfg参数
    • 第六步:运行 python train.py
  • 三、改进方法二
    • 第一步:在common.py中添加BiFPN模块
    • 第二步:在yolo.py中的parse_model函数加入类名
    • 第三步:制作模型配置文件
    • 第四步:验证新加入的BiFPN
    • 第五步:修改train.py中的cfg参数
    • 第六步:运行 python train.py

一、BiFPN简介

BiFPN即“双向特征金字塔网络”,常用于目标检测和实例分割的神经网络架构。EfficientDet是以EfficientNet模型和双向特征加权金字塔网络BiFPN为基础,于2020年创新推出的新一代目标检测模型。

论文题目:《EfficientDet: Scalable and Efficient Object Detection》(《EfficientDet:可扩展且高效的目标检测》)
原文地址:EfficientDet: Scalable and Efficient Object Detection
论文提供代码地址:https://github.com/google/automl/tree/master/efficientdet
第三方提供代码地址:https://github.com/jewelc92/mmdetection/blob/3.x/projects/EfficientDet/efficientdet/bifpn.py

二、改进方法一

第一步:在common.py中添加BiFPN模块

代码如下:

# BiFPN 
# 两个特征图add操作
class BiFPN_Add2(nn.Module):
    def __init__(self, c1, c2):
        super(BiFPN_Add2, self).__init__()
        # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
        # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
        # 从而在参数优化的时候可以自动一起优化
        self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
        self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
        self.silu = nn.SiLU()
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)
        return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))
 
 
# 三个特征图add操作
class BiFPN_Add3(nn.Module):
    def __init__(self, c1, c2):
        super(BiFPN_Add3, self).__init__()
        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
        self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
        self.silu = nn.SiLU()
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  
        # Fast normalized fusion
        return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))

效果如下:
在这里插入图片描述

第二步:在yolo.py中的parse_model函数加入类名

添加内容如下:

# 添加bifpn_add结构
elif m in [BiFPN_Add2, BiFPN_Add3]:
    c2 = max([ch[x] for x in f])

效果如下:
在这里插入图片描述

第三步:制作模型配置文件

复制yolov5s.yaml文件,重命名为yolov5s_BiFPN.yaml,代码如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 12  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.1 BiFPN head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, BiFPN_Add2, [256, 256]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, BiFPN_Add2, [128, 128]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 
 
   [-1, 1, Conv, [512, 3, 2]],  
   [[-1, 13, 6], 1, BiFPN_Add3, [256, 256]],  #v5s通道数是默认参数的一半
   [-1, 3, C3, [512, False]],  # 20 
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, BiFPN_Add2, [256, 256]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

第四步:验证新加入的BiFPN

运行yolo.py:

在这里插入图片描述
可以看到所有的Concat被换成了BiFPN_Add

第五步:修改train.py中的cfg参数

将模型配置文件修改为yolov5s_BiFPN.yaml

在这里插入图片描述

第六步:运行 python train.py

开始训练:

在这里插入图片描述
训练结束后结果保存到run/train文件夹下~

结果对比:
在这里插入图片描述

可以看到更换BiFPN之后的性能有所下降!

好了,到这里关于YOLOv5中第一种BiFPN替换Neck的改进就完成了!

三、改进方法二

第一步:在common.py中添加BiFPN模块

添加代码如下:

# 结合BiFPN 设置可学习参数 学习不同分支的权重
# 两个分支concat操作
class BiFPN_Concat2(nn.Module):
    def __init__(self, dimension=1):
        super(BiFPN_Concat2, self).__init__()
        self.d = dimension
        self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
        # Fast normalized fusion
        x = [weight[0] * x[0], weight[1] * x[1]]
        return torch.cat(x, self.d)
 
 
# 三个分支concat操作
class BiFPN_Concat3(nn.Module):
    def __init__(self, dimension=1):
        super(BiFPN_Concat3, self).__init__()
        self.d = dimension
        # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
        # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
        # 从而在参数优化的时候可以自动一起优化
        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
        # Fast normalized fusion
        x = [weight[0] * x[0], weight[1] * x[1], weight[2] * x[2]]
        return torch.cat(x, self.d)

效果如下:

在这里插入图片描述

第二步:在yolo.py中的parse_model函数加入类名

添加以下代码:

# 添加bifpn_concat结构
elif m in [Concat, BiFPN_Concat2, BiFPN_Concat3]:
    c2 = sum(ch[x] for x in f)

效果如下:

在这里插入图片描述

第三步:制作模型配置文件

复制yolov5s.yaml重命名为yolov5s-BiFPN1.yaml,内容如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 12  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.1 BiFPN head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, BiFPN_Concat2, [1]],  # cat backbone P4 <--- BiFPN change
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, BiFPN_Concat2, [1]],  # cat backbone P3 <--- BiFPN change
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14, 6], 1, BiFPN_Concat3, [1]],  # cat P4 <--- BiFPN change
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, BiFPN_Concat2, [1]],  # cat head P5 <--- BiFPN change
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

第四步:验证新加入的BiFPN

运行models/yolo.py

在这里插入图片描述

第五步:修改train.py中的cfg参数

跟上面步骤一样,将模型配置文件修改为yolov5s_BiFPN1.yaml

第六步:运行 python train.py

开始训练:

在这里插入图片描述

训练结束后结果保存到run/train文件夹下~

结果对比:
在这里插入图片描述

可以看到更换BiFPN之后的前30轮均有所提升,后70轮基本相平!

好了,到这里关于YOLOv5中第二种BiFPN替换Neck的改进就完成了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/616666.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[ES] ElasticSearch节点加入集群失败经历分析主节点选举、ES网络配置 [publish_address不是当前机器ip]

背景 三台CentOS 7.6.1虚拟机&#xff0c; 每台虚拟机上启动一个ElasticSearch 7.17.3&#xff08;下面简称ES&#xff09;实例 即每台虚拟机上一个ES进程&#xff08;每台虚拟机上一个ES节点&#xff09; 情况是&#xff1a; 之前集群是搭建成功的, 但是今天有一个节点一…

unity制作app(6)--服务器保存数据

1.成功将app的所有数据上传到客户端 2.把数据存储到txt文件中&#xff0c;照猫画虎修改create的内容&#xff0c;原内容如下&#xff1a; 写入函数调用的起始位置&#xff1a; 修改后的create内容如下&#xff1a; 3.最终写入文件的内容如下&#xff1a; 4.补充一下结构体的初…

现代制造之Cura切片

现代制造 有现代技术支撑的制造业&#xff0c;即无论是制造还是服务行业&#xff0c;添了现代两个字不过是因为有了现代科学技术的支撑&#xff0c;如发达的通信方式&#xff0c;不断发展的互联网&#xff0c;信息化程度加强了&#xff0c;因此可以为这两个行业增加了不少优势…

i春秋-Test

题目 解题 参考WP https://blog.csdn.net/qq_40654505/article/details/107142533/目录扫描 复现wp payload为&#xff1a; search.php?searchtype5&tid&areaeval($_POST[cmd])使用蚁剑连接 http://eci-2ze4iyhwj7xvb68bsb2t.cloudeci1.ichunqiu.com:80/search.ph…

语义分割——天空图像分割数据集

引言 亲爱的读者们&#xff0c;您是否在寻找某个特定的数据集&#xff0c;用于研究或项目实践&#xff1f;欢迎您在评论区留言&#xff0c;或者通过公众号私信告诉我&#xff0c;您想要的数据集的类型主题。小编会竭尽全力为您寻找&#xff0c;并在找到后第一时间与您分享。 …

差分约束 C++ 算法例题

差分约束 差分约束 是一种特殊的 n 元一次不等式组&#xff0c;m 个约束条件&#xff0c;可以组成形如下的格式&#xff1a; { x 1 − x 1 ′ ≤ y 1 x 2 − x 2 ′ ≤ y 2 ⋯ x m − x m ′ ≤ y m \begin{cases} x_1-x_1^{} \le y_1 \\ x_2-x_2^{} \le y_2 \\ \cdots \\ x_…

AR人像滤镜SDK解决方案,专业调色,打造个性化风格

视觉内容已成为企业传达品牌价值和吸引用户眼球的重要载体&#xff0c;为满足企业对于高质量、多样化视觉内容的迫切需求&#xff0c;美摄科技凭借先进的AR技术和深厚的图像处理经验&#xff0c;推出了业界领先的AR人像滤镜SDK解决方案。 一、一站式解决方案&#xff0c;覆盖多…

Emacs之取消sh-mode模式下:快捷键C-c C-c(一百三十七)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

基于单片机的温度控制系统设计(51基础版)-设计说明书

本论文设计了一种基于51单片机的温度控制系统&#xff0c;该系统具备以下主要功能&#xff1a;首先&#xff0c;通过温度传感器实时检测环境温湿度&#xff0c;以获取准确的温度数值。其次&#xff0c;通过按键设置温度阈值&#xff0c;用户可以根据需求自行调整控制温度的上限…

You Only Cache Once:YOCO 基于Decoder-Decoder 的一个新的大语言模型架构

这是微软再5月刚刚发布的一篇论文提出了一种解码器-解码器架构YOCO&#xff0c;因为只缓存一次KV对&#xff0c;所以可以大量的节省内存。 以前的模型都是通过缓存先前计算的键/值向量&#xff0c;可以在当前生成步骤中重用它们。键值(KV)缓存避免了对每个词元再次编码的过程&…

WHAT - CSS Animationtion 动画系列(一)

目录 一、介绍二、animation-name三、animation-duration四、animation-timing-function4.1 介绍4.2 具体实践&#xff1a;抛物线 五、animation-delay六、animation-iteration-count七、animation-direction八、animation-fill-mode九、animation-play-state 今天我们主要学习…

HackMyVM-Minimal

目录 信息收集 arp nmap nikto whatweb WEB web信息收集 gobuster 文件包含漏洞 提权 web信息收集 main方法 question_1 question_2 question_3 prize.txt 软连接 信息收集 arp ┌──(root?0x00)-[~/HackMyVM] └─# arp-scan -l Interface: eth0, type: E…

中职智慧校园建设内容规划

1. 渠道先行 1) IT根底设施渠道是支撑智慧学校使用体系所必需的运转环境&#xff0c;是首要需求建造的内容&#xff0c;但是要遵从有用准则&#xff0c;IT设备开展很快&#xff0c;更新很快&#xff0c;不要片面追求全而新&#xff1b; 2) 使用根底渠道是支撑智慧学校使用体系作…

SCI一区论文蛇优化器(SO)独家原创改进!适合发表paper!

购买改进/原创算法避坑指南 这会触及很多人的利益&#xff0c;但是不得不发声&#xff0c;教大家避坑&#xff01;因为现在元启发式/群智能算法改进、原创算法市场太乱了&#xff0c;导致产生了很多受害者。 1、增加复杂度的不要买&#xff0c;大家可以叫商家给出运行时间比较…

Java 修饰符

Java 修饰符 Java语言提供了很多修饰符&#xff0c;主要分为以下两类&#xff1a; 访问修饰符 非访问修饰符 修饰符用来定义类、方法或者变量&#xff0c;通常放在语句的最前端。我们通过下面的例子来说明&#xff1a; public class ClassName { // … } private boolean myF…

74从零开始学Java之排序算法中的冒泡和选择排序

作者:孙玉昌,昵称【一一哥】,另外【壹壹哥】也是我哦 CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者 前言 我们要想成为一个优秀的程序员,其实非常关键的一点就是要锻炼培养自己的编程思维,就好比一个狙击手,要通过大量的射击训练要用大量的子弹喂出来。同样的…

第十三篇:智慧之网:深度探索关系型数据库的数学奥秘与实战技艺

智慧之网&#xff1a;深度探索关系型数据库的数学奥秘与实战技艺 1. 引言 1.1 数据时代的基石 在数字化的浪潮中&#xff0c;数据已成为新时代的石油&#xff0c;而关系型数据库则是这座数据矿藏的精炼厂。自E.F. Codd在1970年提出关系模型以来&#xff0c;关系型数据库以其坚…

新iPadPro是怎样成为苹果史上最薄产品的|Meta发布AI广告工具全家桶| “碾碎一切”,苹果新广告片引争议|生成式AI,苹果倾巢出动

Remini走红背后&#xff1a;AI生图会是第一个超级应用吗&#xff1f;新iPadPro是怎样成为苹果史上最薄产品的生成式AI&#xff0c;苹果倾巢出动Meta发布AI广告工具全家桶&#xff0c;图像文本一键生成解放打工人苹果新iPadPro出货量或达500万台&#xff0c;成中尺寸OLED发展关键…

Zynq开发-使用PYNQ快速入门摄像头MIPI驱动(OV5640)

目录 1. 简介 2. 配置代码 2.1 初始化寄存器 2.2 分辨率寄存器 2.3 白平衡寄存器 2.4 配置寄存器代码 2.5 顶层代码 3. 细节指引 4. 总结 1. 简介 PYNQ是一种基于Python的开发环境&#xff0c;专门设计用于快速、简便地在Xilinx的Zynq平台上进行开发。在《Zynq开发之…

关于‘==’与equals的区别

我写的也不清楚&#xff0c;有兴趣的可以看这位大佬的文章链接&#xff0c;说的很清楚 https://www.cnblogs.com/Latiny/p/8099581.html#!comments 与 equals 方法 判断两个变量是否相等有两种方式&#xff1a;一种是利用 运算符&#xff0c;另一种是利用equals方法。 注意…