2024C题生物质和煤共热解问题的研究 详细思路

背景

随着全球能源需求的不断增长和对可再生能源的追求,生物质和煤共热解作为一种潜在的能源转化技术备受关注。生物质是指可再生能源,源自植物和动物的有机物质,而煤则是一种化石燃料。** 在共热解过程中,生物质和煤在高温和缺氧条件下一起热解,产生气体、液体和固体产物,其中液体产物被称为热解油或生物油。 **研究生物质和煤共热解油的产率和品质机理对提高能源利用效率、促进资源综合利用和确保能源安全具有重要意义。

实验要求【重点】

一化工实验室选取棉杆(CS)、稻壳(RH)、木屑(SD)、小球藻(GA)等多种生物质和淮南煤(HN)、神木煤(SM)、黑山煤(HS)、内蒙褐煤(NM)等中低阶煤为共热解原料,并利用管式干馏炉在温和热解条件下研究不同种类和配比原料的共热解对产物分布的影响。 在实验室研究中,微晶纤维素通常被用作一种模型化合物,以代表生物质中的主要纤维素成分,用来分析生物质热解产物的特性和化学反应机理。为进一步研究共热解产物生成机理,该实验室引入微晶纤维素作为模型化合物,分析比较棉杆(CS)热解、神木煤(SM)热解、棉杆/神木煤(CS/SM)共热解和微晶纤维素/神木煤共热解产生的正己烷可溶物(HEX)组分变化。共热解实验以5/100,10/100,20/100,30/100,50/100 为混合比例进行固定热解实验。实验结果如附件1和附件2所示,名词解释见附录。
在这里插入图片描述
在这里插入图片描述

题目

通过对比不同原料单独热解和共热解的产物组成,分析生物质与煤的协同效应,揭示共热解过程中可能存在的协同效应和相互转化的机制,为深入理解共热解过程提供理论依据和实验数据支持。如果能够建立数学模型对共热解产物预测和优化,将有助于提高生物质与煤共热解过程的效率和产物利用率,同时减少环境污染和资源浪费。请通过数学建模完成下列问题:

第一题

基于附件一,请分析正己烷不溶物(INS)对热解产率(主要考虑焦油产率、水产率、焦渣产率)是否产生显著影响?并利用图像加以解释

第二题

热解实验中,正己烷不溶物(INS)和混合比例是否存在交互效应,对热解产物产量产生重要影响?若存在交互效应,在哪些具体的热解产物上样品重量和混合比例的交互效应最为明显?

问题三

根据附件一,基于共热解产物的特性和组成,请建立模型优化共解热混合比例,以提高产物利用率和能源转化效率。

问题四

根据附件二,请分析每种共热解组合的产物收率实验值与理论计算值是否存在显著性差异?若存在差异,请通过对不同共热解组合的数据进行子组分析,确定实验值与理论计算值之间的差异在哪些混合比例上体现?

问题五

基于实验数据,请建立相应的模型,对热解产物产率进行预测

附件

附件一:热解数据统计.xlsx
附件二: 热解产物产率计算结果.xls

附录解释(及公式)

单独热解的煤和生物质: 淮南煤(HN)、神木煤(SM)、黑山煤(HS)、内蒙褐煤(NM)、棉杆(CS)、木屑(SD)、小球藻(GA)、稻壳(RH)。

共热解组合: 棉杆/淮南煤(CS/HN)、棉杆/神木煤(CS/SM)、棉杆 /黑山煤(CS/HS)、木屑/黑山煤(SD/HS)、木屑/神木煤(SD/SM)、小球 藻/淮南煤(GA/HN)、小球藻/内蒙褐煤 (GA/NM)、小球藻/神木
煤(GA/SM)、稻壳/淮南煤(RH/HN)、稻壳/神木煤 (RH/SM)。热解产物: 焦油(Tar)、 正己烷可溶物(HEX)、水(Water)、焦渣(Char)

设生物质与煤的热解混合比例为定义如下函数:
f ( x , y , θ ( x , y ) ) = x x + y × f(x, y, \theta(x, y))=\frac{x}{x+y} \times f(x,y,θ(x,y))=x+yx× 生物质热解的产物收率
+ y x + y × +\frac{y}{x+y} \times +x+yy× 煤热解的产物收率 + θ ( x , y ) +\theta(x, y) +θ(x,y),

其中 f ( x , y , θ ( x , y ) ) f(x, y, \theta(x, y)) f(x,y,θ(x,y))表示在 x y \frac{x}{y} yx混合比例实际产物收率下, θ ( x , y ) ) \theta(x, y)) θ(x,y))生物质与煤共热解的是交叉项,表示生物质与煤共热解的交互作用,以及其他因素的影响等,其作用有可能是促进作用也可能是抑制作用。

“” x x + y \frac{x}{x+y} x+yx × \times × 生物质热解的产物收率 + y x + y \frac{y}{x+y} x+yy × \times × 煤热解的产物收率 "是相当于函数 f ( x , y , θ ( x , y ) ) f(x, y, \theta(x, y)) f(x,y,θ(x,y)) 线性近似部分,附件2中的理论计算值即是用这个线性近似部分计算的。

另外,焦油是共热解产物中主要关注的部分,提高产物产量主要指提高焦油产量,其他产物及成本不予考虑。煤热解得到的焦油通常含有较少的杂质,易于提炼和利用。相比之下,生物质热解得到的焦
油含有较多的杂质,需要更复杂的处理工艺才能提炼出纯净的产品。生物质热解产生的焦油处理成本较高,对环境和资源消耗也有更大的影响。因此,进行共热解实验时,期望得到的产物焦油更偏向于煤焦油。或者说,科研人员更关注煤热解所产生的煤焦油。生物质和煤热解之后得到的焦油其质量等同于煤热解直接产生的焦油。本实验的目的,就是为了通过生物质和煤热解反应得到(比煤直接热解)更多的煤焦油。

所有热解实验的初始温度均为 600℃, 升温 5℃/min。

思路

第一题思路:影响分析和可视化

总体为:数据的简单处理,检验,可视化

  1. 基本的数据处理和数据转换(参考国赛古风玻璃题目)。
  2. 显著性检验。介绍参考:为什么要做显著性检验? 相关性检验
    2.1 相关性检验:对于正己烷不溶物(INS)与热解产率的相关性分析,可以使用Pearson或Spearman相关系数,根据数据的分布和特性选择合适的方法。相关系数的显著性可以通过计算p值来评估,通常使用t检验的变体来测试相关系数是否显著不为零。
    2.2 统计学回归检验。t检验:检验每个自变量的回归系数是否显著不同于零。如果p值低于某个阈值(通常为0.05),则认为该系数在统计上显著,即该变量对响应变量有显著影响。F检验:对整个回归模型进行检验,判断模型中至少有一个预测变量对响应变量有统计显著的影响。【F检验不做也行】
    2.3 可视化:绘制散点图和热力图来直观展示相关性和回归结果。

第二题思路:交互效应分析

  1. 首先对每种热解产物(焦油、水、焦渣、正己烷可溶物)进行基本的统计分析,了解数据。如果有缺失值等,需要进行处理。
  2. 建立模型:线性混合效应模型或多元线性回归模型,这些模型可以包括交互项。除此之外,还有更高级的模型:如随机森林、梯度提升可以自动捕捉变量间的复杂和非线性关系,第二题回归基本就够了吧。
  3. 统计检验:显著性检验:进行t检验,判断模型中各项(特别是交互项)的统计显著性。影响度分析:评估交互效应对各产率的具体影响程度,确定哪些组合的交互效应最明显。
  4. 可视化相关图,两两之间的即可,无需多维度绘制。
  5. 据图形和统计分析的结果,解释哪些具体的热解产物在哪些样品重量和混合比例的组合下,交互效应表现最为显著。

第三题:优化算法寻优题

  1. 建立优化模型:在热解产率与原料混合比、正己烷不溶物之间建立数学模型。
  2. 目标函数和约束:定义优化目标(如最大化焦油产率),设置约束条件(原料比例)。
  3. 求解优化问题:使用线性或非线性优化算法求解模型,找到最优的原料混合比例。求解可以使用遗传算法等优化算法进行求解。

参考公式:见附录解释(及公式)。

第四题:显著性分析

初步分析:
1)计算每种组合和混合比例下实验值与理论值的差异,通过差异的绝对值或百分比形式表示。
2)制作差异分布图,初步观察哪些组合或比例下差异较大。

方差分析(ANOVA):使用双因素方差分析(考虑共热解组合和混合比例为两个因素),分析这两个因素及其交互作用对差异的影响。

差异的统计显著性检验:
1)对每种组合和比例下的差异进行t检验,评估其统计显著性,可以做个对比可视化结果。
2)根据p值调整方法(如Bonferroni或FDR)调整多重比较的影响,还可以做个敏感性分析了。【可选】

根据ANOVA结果,选择差异最显著的组合和比例进行深入分析。分析这些条件下实验值与理论值差异的可能原因,探讨影响因素如温度、压力、原料特性等。

第五题思路:机器学习预测模型构建

  1. 选择模型:根据数据特性和问题需求,选择合适的预测模型,如神经网络、随机森林,XGBOOST这种高级模型套上去,或者选多个模型进行比较,得到最佳模型。
  2. 特征选择和数据准备:确定影响产率的关键因素,进行数据预处理和特征工程。
  3. 模型训练和验证:使用交叉验证等技术训练和调优模型,评估模型的预测性能。
  4. 可视化性能

附件具体的使用

使用附件一

附件一包含了各种生物质和煤的单独热解以及共热解的实验数据,主要用于:

  1. 数据预处理:整理数据格式,处理缺失值和异常值,计算平均值等。
  2. 显著性检验和相关性分析
    • 计算正己烷不溶物(INS)和其他热解产物(焦油、水、焦渣)的相关性。
    • 通过线性回归模型分析正己烷不溶物对热解产率的影响,进行t检验和F检验。
  3. 可视化:绘制相关性热力图和散点图,展示正己烷不溶物与热解产率之间的关系。

使用附件二

附件二提供了每种生物质和煤的共热解组合下,实验值与理论计算值的对比,主要用于:

  1. 差异分析
    • 计算实验值与理论计算值之间的差异。
    • 制作差异分布图,观察不同组合和混合比例下差异的大小。
  2. 方差分析(ANOVA)
    • 使用双因素方差分析考察共热解组合和混合比例对差异的影响。
    • 分析交互作用的统计显著性。
  3. 显著性检验
    • 对差异进行t检验或非参数检验。
    • 调整多重比较的影响,如使用Bonferroni或FDR方法进行p值调整。

具体步骤

  1. 读取数据:加载附件一和附件二的数据到Python环境中,使用Pandas进行数据处理。
  2. 数据清洗:统一数据格式,处理缺失数据,可能需要对附件一和附件二中的数据进行合并或关联分析。
  3. 建模与分析
    • 使用statsmodelsscikit-learn库进行线性回归分析和显著性检验。
    • 使用matplotlibseaborn进行数据可视化。
  4. 优化与预测
    • 根据分析结果,使用优化算法调整混合比例以最大化焦油产率。
    • 应用机器学习模型(如神经网络、随机森林)进行产率预测。

代码:推荐使用我的GPT

网址:ChatGPT4.0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/611595.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据库调优-SQL语句优化

2. SQL语句优化 sql 复制代码 # 请问这两条SQL语句有什么区别呢?你来猜一猜那条SQL语句执行查询效果更好! select id from sys_goods where goods_name华为 HUAWEI 麦芒7 魅海蓝 6G64G 全网通; ​ select id from sys_goods where goods_id14967325985…

【科研】常用的实验结果评价指标(1) —— R2(R-square)是什么?

常用的实验结果评价指标(1) —— R2(R-square),可能为负数吗?! 提示:先说概念,后续再陆续上代码 文章目录 常用的实验结果评价指标(1) —— R2(R-square),可能…

【电路笔记】-无源高通滤波器

无源高通滤波器 文章目录 无源高通滤波器1、概述2、一阶高通滤波器的频率响应3、高通滤波器示例4、二阶高通滤波器5、RC 差异化因素高通滤波器与低通滤波器电路完全相反,因为这两个组件已互换,滤波器输出信号现在从电阻器两端获取。 1、概述 由于低通滤波器只允许低于其截止…

Python中的多进程、多线程、协程

Python中的多线程、多进程、协程 一、概述 1. 多线程Thread (threading): 优点:同一个进程中可以启动多个线程,充分利用IO时,cpu进行等待的时间缺点:相对于进程,多线程只能并发执…

Python写了for i in range(10)却只打印一遍?

题目:定义一个两个参数的重复打印函数,第一个参数指定要打印的字符串,第二个参数指定要重复打印的次数,在主程序中调用该函数,打印10遍你的学号姓名。 为什么调用函数后结果只打印了一遍? 看了题目感觉就很诡异&#…

AS-VJ900实时视频拼接系统产品介绍:两画面视频拼接方法和操作

目录 一、实时视频拼接系统介绍 (一)实时视频拼接的定义 (二)无缝拼接 (三)AS-VJ900功能介绍 1、功能 2、拼接界面介绍 二、拼接前的准备 (一)摄像机选择 (二&a…

169.招式拆解 II(unordered_map)

刷算法题: 第一遍:1.看5分钟,没思路看题解 2.通过题解改进自己的解法,并且要写每行的注释以及自己的思路。 3.思考自己做到了题解的哪一步,下次怎么才能做对(总结方法) 4.整理到自己的自媒体平台。 5.再刷重复的类…

数据中心法

数据中心法是实现词法分析器的结构化方法。通过设计主表和子表分开存储状态转移信息,实现词法分析器的控制逻辑和数据结构分离。 主要解决了状态爆炸、难以维护和复杂性的问题。 状态爆炸是指当状态和转移较多时,单一使用一个表来存储所有的信息的话会导…

Paddle 实现DCGAN

传统GAN 传统的GAN可以看我的这篇文章:Paddle 基于ANN(全连接神经网络)的GAN(生成对抗网络)实现-CSDN博客 DCGAN DCGAN是适用于图像生成的GAN,它的特点是: 只采用卷积层和转置卷积层&#x…

如何在 CentOS 上安装并配置 Redis

如何在 CentOS 上安装并配置 Redis 但是太阳,他每时每刻都是夕阳也都是旭日。当他熄灭着走下山去收尽苍凉残照之际,正是他在另一面燃烧着爬上山巅散烈烈朝晖之时。 ——史铁生 环境准备 本教程将在 CentOS 7 或 CentOS 8 上进行。确保你的系统已更新到最…

自托管站点监控工具 Uptime Kuma 搭建与使用

本文首发于只抄博客,欢迎点击原文链接了解更多内容。 前言 Uptime Kuma 是一个类似 Uptime Robot 的站点监控工具,它可以自托管在自己的 Nas 或者 VPS 上,用来监控各类站点、数据库等 监控类型:支持监控 HTTP(s) / TCP / HTTP(s…

Day 43 1049. 最后一块石头的重量 II 494. 目标和 474.一和零

最后一块石头重量Ⅱ 有一堆石头&#xff0c;每块石头的重量都是正整数。 每一回合&#xff0c;从中选出任意两块石头&#xff0c;然后将它们一起粉碎。假设石头的重量分别为 x 和 y&#xff0c;且 x < y。那么粉碎的可能结果如下&#xff1a; 如果 x y&#xff0c;那么两…

【LLM 论文】Step-Back Prompting:先解决更高层次的问题来提高 LLM 推理能力

论文&#xff1a;Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models ⭐⭐⭐⭐ Google DeepMind, ICLR 2024, arXiv:2310.06117 论文速读 该论文受到的启发是&#xff1a;人类再解决一个包含很多细节的具体问题时&#xff0c;先站在更高的层次上解…

【Git】Github创建远程仓库并与本地互联

创建仓库 点击生成新的仓库 创建成功后会生成一个这样的文件 拉取到本地 首先先确保本地安装了git 可以通过终端使用 git --version来查看是否安装好了git 如果显示了版本信息&#xff0c;说明已经安装好了git&#xff0c;这时候我们就可以进入我们想要clone到问目标文件夹 …

计算机系列之算法分析与设计

21、算法分析与设计 算法是对特定问题求解步骤的一种描述。它是指令的有限序列&#xff0c;其中每一条指令标识一个或多个操作。 它具有有穷性、确定性&#xff08;含义确定、输入输出确定&#xff0c;相同输入相同输出&#xff1b;执行路径唯一&#xff09;、可行性、输入&a…

【SAP ME 38】SAP ME发布WebService配置及应用

更多WebService介绍请参照 【SAP ME 28】SAP ME创建开发组件&#xff08;DC&#xff09;webService 致此一个WebService应用发布成功&#xff0c;把wsdl文件提供到第三方系统调用接口&#xff01; 注意&#xff1a; 在SAP ME官方开发中默认对外开放的接口是WebService接口&am…

01、vue+openlayers6实现自定义测量功能(提供源码)

首先先封装一些openlayers的工具函数&#xff0c;如下所示&#xff1a; import VectorSource from ol/source/Vector; import VectorLayer from ol/layer/Vector; import Style from ol/style/Style; import Fill from ol/style/Fill; import Stroke from ol/style/Stroke; im…

Android GPU渲染SurfaceFlinger合成RenderThread的dequeueBuffer/queueBuffer与fence机制(2)

Android GPU渲染SurfaceFlinger合成RenderThread的dequeueBuffer/queueBuffer与fence机制&#xff08;2&#xff09; 计算fps帧率 用 adb shell dumpsys SurfaceFlinger --list 查询当前的SurfaceView&#xff0c;然后有好多行&#xff0c;再把要查询的行内容完整的传给 ad…

题目----力扣--移除链表元素

题目 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[1,2,3,4,5]示例 2&#xff1a; 输入&…

智慧公厕:让厕所管理变得更智慧、高效、舒适!

公共厕所是城市的重要组成部分&#xff0c;但常常被忽视。它们的管理和养护往往面临着许多问题&#xff0c;例如卫生状况不佳、环境畏畏缩缩、设施老旧等。为了解决这些问题&#xff0c;智慧公厕应运而生。智慧公厕是一种全方位的应用解决方案&#xff0c;将科技与公共厕所管理…