A 构造相同颜色的正方形
枚举:枚举每个 3 × 3 3\times 3 3×3的矩阵,判断是否满足条件
class Solution {
public:
bool canMakeSquare(vector<vector<char>>& grid) {
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++) {
int c1 = 0, c2 = 0;
for (int r = 0; r < 2; r++)
for (int c = 0; c < 2; c++)
if (grid[i + r][j + c] == 'B')
c1++;
else
c2++;
if (max(c1, c2) >= 3)
return true;
}
return false;
}
};
B 直角三角形
枚举:记录各行各列的 1 1 1 的数目,然后枚举每个直接三角形的直角所在的位置 g r i d [ i ] [ j ] grid[i][j] grid[i][j]
class Solution {
public:
long long numberOfRightTriangles(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<int> row(m), col(n);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++) {
row[i] += grid[i][j];
col[j] += grid[i][j];
}
long long res = 0;
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
if (grid[i][j])
res += 1LL * (row[i] - 1) * (col[j] - 1);
return res;
}
};
C 找出所有稳定的二进制数组 I
动态规划:设 p [ i ] [ j ] [ t a i l ] p[i][j][tail] p[i][j][tail] 为含有 i i i 个 0 0 0 和 j j j 个 1 1 1 且以 t a i l tail tail 为结尾的稳定二进制数组的个数,可以枚举其全为 t a i l tail tail 的后缀数组的可能长度来进行状态转移
class Solution {
public:
using ll = long long;
ll mod = 1e9 + 7;
int numberOfStableArrays(int zero, int one, int limit) {
ll p[zero + 1][one + 1][2];
memset(p, 0, sizeof(p));
for (int cz = 1; cz <= zero && cz <= limit; ++cz)
p[cz][0][0] = 1;
for (int co = 1; co <= one && co <= limit; ++co)
p[0][co][1] = 1;
for (int i = 0; i <= zero; i++) {
for (int j = 0; j <= one; j++) {
for (int last = 1; last <= limit; last++) {//全为tail的后缀数组的长度为last
if (i - last >= 0)
p[i][j][0] = (p[i][j][0] + p[i - last][j][1]) % mod;
if (j - last >= 0)
p[i][j][1] = (p[i][j][1] + p[i][j - last][0]) % mod;
}
}
}
return ((p[zero][one][0] + p[zero][one][1]) % mod + mod) % mod;
}
};
D 找出所有稳定的二进制数组 II
动态规划:设 p [ i ] [ j ] [ t a i l ] p[i][j][tail] p[i][j][tail] 为含有 i i i 个 0 0 0 和 j j j 个 1 1 1 且以 t a i l tail tail 为结尾的稳定二进制数组的个数,枚举其全为 t a i l tail tail 的后缀数组的可能长度来进行状态转移,可以通过维护两个前缀和来优化状态转移的时间复杂度
class Solution {
public:
using ll = long long;
ll mod = 1e9 + 7;
int numberOfStableArrays(int zero, int one, int limit) {
ll p[zero + 1][one + 1][2];
ll ps0[zero + 1][one + 1];
ll ps1[zero + 1][one + 1];
memset(p, 0, sizeof(p));
memset(ps0, 0, sizeof(ps0));
memset(ps1, 0, sizeof(ps1));
for (int i = 1; i <= zero && i <= limit; ++i) {
p[i][0][0] = 1;
ps0[i][0] = 1;
}
for (int j = 1; j <= one && j <= limit; ++j) {
p[0][j][1] = 1;
ps1[0][j] = 1;
}
for (int i = 0; i <= zero; i++) {
for (int j = 0; j <= one; j++) {
// [max(0,i-limit),i-1]
if (int l = max(0, i - limit), r = i - 1; l <= r)
p[i][j][0] += l != 0 ? (ps1[r][j] - ps1[l - 1][j]) % mod : ps1[r][j];
if (int l = max(0, j - limit), r = j - 1; l <= r)
p[i][j][1] += l != 0 ? (ps0[i][r] - ps0[i][l - 1]) % mod : ps0[i][r];
if (j)
ps0[i][j] = (ps0[i][j - 1] + p[i][j][0]) % mod;
if (i)
ps1[i][j] = (ps1[i - 1][j] + p[i][j][1]) % mod;
}
}
return ((p[zero][one][0] + p[zero][one][1]) % mod + mod) % mod;
}
};