【机器学习300问】84、AdaGrad算法是为了解决什么问题?

        神经网络的学习的目的是找到使损失函数的值尽可能小的参数。这是寻找最优参数的问题,解决这个问题的过程称为最优化。因为参数空间非常复杂,无法轻易找到最优解,而且在深度神经网络中,参数的数量非常庞大,导致最优化问题更加复杂。

        为了找到最优参数,我们可以采取随机梯度下降算法(SGD)来一次次沿着梯度方向更新参数,逐渐靠近最优参数。SGD是个简单的方法但它有局限性,所以发明了Momentum、AdaGrad等改良的梯度下降算法。

        关于SGD的局限性,我在之前的篇文章中写过,这里给出链接后就不展开啦!

基础梯度下降法:缓慢探索的徒步者icon-default.png?t=N7T8http://t.csdnimg.cn/XnxSX

一、学习率衰减

        在神经网络的学习中,学习率\eta的值很重要。学习率过小,会导致学习花费过多时间;反过来学习率过大,则会导致学习发散而不能正确进行。关于学习率的有效技巧中,有一种被称之为学习率衰减的方法,它的基本思想是在训练初期使用较大的学习率以快速接近最优解,随着训练的进行,逐渐减小学习率,使得模型能够更细致地调整参数,避免因过大的学习率而错过最优解或导致发散。

二、AdaGrad算法的原理

(1)通过举例来感性认识

        想象一下,AdaGrad算法就像是一个细心的园丁,负责照顾一片有着各种不同植物的花园。在这个花园里,每株植物代表模型中的一个参数,而花园的繁荣程度则对应着我们的模型性能。园丁的目标是让花园长得茂盛,但他不能给所有植物浇一样的水,因为有的植物喜湿,有的耐旱。

        在传统的梯度下降中,就好比是用同一壶水均匀地浇灌整个花园,不管植物的具体需求。但AdaGrad这位智慧的园丁不同,他手里拿着一本详细的日记,记录了每株植物过去的浇水情况(即梯度的大小)。当来到新的一天,他查看每株植物的需水量(梯度),并参考之前的浇水记录,为每一株植物精细调整水量——对于那些过去经常被大量浇水(梯度变化大)的植物,这次就只给一点点水,以免淹死;而对于那些很少得到水分(梯度变化小)的植物,则慷慨地多浇一些,帮助它们更好地成长。

        这样做有什么好处呢?首先,它确保了对每株植物(参数)的关照恰到好处,不会因为过度或不足的调整而导致整个花园(模型)的不平衡。其次,它能有效处理花园中那些生长环境差异大的植物,就像深度学习模型中参数的重要性各不相同一样,AdaGrad能够根据实际情况给予最合适的调整。 

(2)通过定义来理性认识

        Adagrad( Adaptive Gradient 的缩写),即自适应梯度算法,是一种先进的梯度下降优化方法,特别适用于处理稀疏数据和具有特征数量庞大的问题。它通过自适应地调整每个参数的学习率来优化模型训练过程,以应对不同参数在不同时间步可能需要不同学习速率的情况。

Adagrad的更新规则定义如下:

  1. 对于目标函数J(\theta),计算每个参数\theta_i的梯度g_{t,i}
  2.  对所有参数计算梯度平方的累积和G_{t,i} = G_{t-1,i} + g_{t,i}^2
  3. 更新每个参数,其中\eta是全局学习率,\epsilon是一个小的平滑项(如10^{-8})防止除以零:\theta_{t,i} = \theta_{t-1,i} - \frac{\eta}{\sqrt{G_{t,i} + \epsilon}} \cdot g_{t,i}

        Adagrad算法随着梯度的累积,逐渐减小学习率,适用于梯度下降的早期阶段,能更快地逼近目标函数的最小值。但它也可能会过早地降低学习率,导致优化过程在学习后期减缓。

三、AdaGrad算法能解决哪些问题

(1)学习率选择难题

        传统梯度下降算法往往需要手动调整全局学习率,这对于大规模参数空间或者参数敏感性不一的问题来说是个挑战。AdaGrad通过为每个参数独立地调整学习率,自动适应不同参数的学习速度需求,减轻了手动调参的负担。

(2)稀疏数据处理

        在处理稀疏数据集时,部分特征可能在整个训练集中仅出现几次,而其他特征则频繁出现。AdaGrad能够给予这些稀疏特征更多的关注,通过累积稀疏特征的梯度平方来放大其学习率,从而在不过度更新常见特征的同时,也能有效学习到稀疏特征的信息。

(3)特征尺度差异

        在特征尺度差异较大的情况下,固定学习率可能导致对尺度大的特征过度更新,而对尺度小的特征更新不足。AdaGrad通过按元素调整学习率,可以自然地平衡不同尺度特征的学习进度,减少尺度差异带来的影响。

(4)梯度累积效果

        通过累积过去所有梯度的平方,AdaGrad在学习过程中慢慢减小每个参数的学习率,这意味着对于每个参数,算法随着时间的推进变得越来越‘保守’。这有助于减少在训练后期的过度震荡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/610888.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

更新、简略高效的用git(Gitee篇)

前提:因为很多编译软件虽然可以连接git,但是操作起来还是比较懵,不同软件有不同的上传git的方式,而且有的连着GitHub有的是Gitee,那么使用Git Bash无疑是万无一失的方式 然后这一篇也仅针对上传Gitee,上传G…

自动化中遇到的问题归纳总结

1、动态元素定位不到 解决方法:尽量使用固定元素定位,如没有固定元素,则采用绝对路径进行定位,因为元素路径是唯一且不变的 2、自动化脚本执行速度较慢 尽量使用css方法定位元素,使用等待时,少用sleep方…

【双碳系列】碳中和、碳排放、温室气体、弹手指、碳储量、碳循环及leap、cge、dice、openLCA模型

气候变化是当前人类生存和发展所面临的共同挑战,受到世界各国人民和政府的高度关注 ①“双碳”目标下资源环境中的可计算一般均衡(CGE)模型实践技术应用 可计算一般均衡模型(CGE模型)由于其能够模拟宏观经济系统运行…

【机器学习】逻辑化讲清PCA主成分分析

碎碎念:小编去年数学建模比赛的时候真的理解不了主成分分析中的“主成分”的概念!!但是,时隔两年,在机器学习领域我又行了,终于搞明白了!且看正文!再分享一个今天听到的播客中非常触…

【网络安全入门】新手如何参加护网行动?一篇带你零基础入门到精通

前言 “没有网络安全就没有国家安全”。 当前,网络安全已被提升到国家战略的高度,成为影响国家安全、社会稳定至关重要的因素之一。 一、网络安全行业特点 行业发展空间大,岗位非常多 网络安全行业产业以来,随即新增加了几十个…

LaTeX公式学习笔记

\sqrt[3]{100} \frac{2}{3} \sum_{i0}^{n} x^{3} \log_{a}{b} \vec{a} \bar{a} \lim_{x \to \infty} \Delta A B C

自动驾驶系统中的端到端学习

资料下载-《自动驾驶系统中的端到端学习(2020)》https://mp.weixin.qq.com/s/ttNpsn7qyVWvDMZzluU_pA 近年来,卷积神经网络显著提高了视觉感知能力。实现这一成功的两个主要因素是将简单的模块组合成复杂的网络和端到端的优化。然而&#xf…

哪里有高清视频素材软件?哪里有视频素材网站?

在这个视觉内容至关重要的时代,高质量的视频素材不仅能够增强信息传递的效果,还能显著提升观众的观看体验。接下来介绍的这些视频素材网站,将为您的创作提供广泛的选择,从本土到国际,满足您不同的需求和偏好。 1. 蛙学…

ICode国际青少年编程竞赛- Python-2级训练场-识别循环规律2

ICode国际青少年编程竞赛- Python-2级训练场-识别循环规律2 1、 for i in range(3):Dev.step(3)Dev.turnRight()Dev.step(4)Dev.turnLeft()2、 for i in range(3):Spaceship.step(3)Spaceship.turnRight()Spaceship.step(1)3、 Dev.turnLeft() Dev.step(Dev.x - Item[1].…

CrossManager软件安装

目录 一、CrossManager软件 1.1 下载安装程序: 1.2 注册-登录 1.3 运行安装程序 1.4 完成安装: 1.5 激活软件: 文章底部可获取安装包---CrossManager软件安装(有效期30天) 当涉及到专业的软件安装和配置时&…

Java Web 学习笔记(一) —— MySQL(3)

目录 1 Mysql 函数1.1 日期函数1.2 判断函数1.3 字符函数1.4 数学函数 2 Mysql 性能2.1 提高操作数据库性能2.2 执行次数比较多的语句2.3 sql语句的执行效率 3 Mysql 优化(***)3.1 定位慢查询3.2 SQL执行计划3.3 索引3.3.1 索引介绍与分类3.3.2 索引的使…

Python 3 中zip()函数的用法

1 创作灵感 我们在阅读代码的时候,经常会看到zip函数,有的时候还和循环在一起用,今天举几个例子测试一下该函数的用法 2.应用举例 (1)定义了两个列表一个是num,一个是letter (2)使用zip可以把num列表和letter列表中…

大模型微调之 在亚马逊AWS上实战LlaMA案例(七)

大模型微调之 在亚马逊AWS上实战LlaMA案例(七) 微调SageMaker JumpStart上的LLaMA 2模型 这是在us-west-2的测试结果。 展示了如何使用SageMaker Python SDK部署预训练的Llama 2模型,并将其微调到你的数据集,用于领域适应或指令…

numpy1

注意:reshape函数的 - 1(是让电脑 自己计算的意思 import numpy as np n np.arange(0,25).reshape(5,5) m np.array([0,5,10,15,20])nn np.repeat(n,2,axis 1) m m.reshape(-1,1)nn[:,1:8:2] np.tile(m,(1,4)) nn[:,0:-1]

无人机+光电吊舱:四光(可见光+红外热成像+广角+激光测距)吊舱设计技术详解

无人机与光电吊舱的结合,特别是四光吊舱(包含可见光、红外热成像、广角和激光测距技术)的应用,为无人机提供了强大的侦察和测量能力。以下是对四光吊舱设计技术的详解: 1. 可见光技术:可见光相机是吊舱中最…

螺栓扭矩如何设计?——SunTorque智能扭矩系统

螺栓扭矩设计的大小是一个涉及工程实践的重要问题,它直接关系到螺栓连接的紧固质量和安全性。螺栓扭矩是工程领域中常用的一个概念,用来描述螺栓在连接过程中所需的旋转力矩。正确的螺栓扭矩可以确保螺栓和螺母之间的紧密连接,避免由于松动而…

Java入门基础学习笔记10——变量

变量的学习路径: 认识变量->为什么要用变量?->变量有啥特点?->变量有啥应用场景? 什么是变量? 变量是用来记住程序要处理的数据的。 变量的定义格式: 数据类型 变量名称 数据; 数…

C语言/数据结构——(用双链表实现数据的增删查改)

一.前言 嗨嗨嗨,大家好久不见!前面我们已经通过数组实现数据的增删查改、单链表实现数据的增删查改,现在让我们尝试一下使用双链表实现数据的增删查改吧! 二.正文 如同往常一样,对于稍微大点的项目来说,…

2024洗地机选购指南 | 怎么选洗地机不会被坑?

家里的地板总是需要打扫,但工作忙碌的我们往往没有足够的时间来打理。洗地机不仅能够帮助我们节省宝贵的时间,还能让我们的家变得一尘不染。今天,笔者将为大家讲讲挑选洗地机的技巧,告诉大家怎么挑选洗地机不会被坑,顺…

解锁楼宇自动化新维度西门子Insight+BACnet IP I/O控制器

数字城市的楼宇自动化已不再是一个遥不可及的概念,而是成为了现代建筑的标配。特别是在大型商业综合体、高端写字楼和公共设施中,高效的楼宇管理系统是确保环境舒适度与能源效率的关键。当提及楼宇自动化领域的佼佼者,西门子Insight楼宇自动化…