在Android系统中,键盘按键事件是由SystemServer服务来管理的;然后在以消息的形式分发给应用程序处理。产生键盘按键事件则是有Linux kernel的相关驱动来实现。键盘消息有别于其他类型的消息;需要从Linux kernel drivers产生由上层APP来处理。同时按键有着不同的映射值,因此从模块独立性角度各个独立的模块应该拥有不同的键盘映射。这样以来,kernel产生的按键事件必然回经过不同的映射才到APP。
Android使用标准的Linux输入事件设备(/dev/input/)和驱动按键定义在Linux内核include/linux/input.h中,按键的定义形式如下(仅以BACK HOME MENU为例):
Kernel内核驱动会产生事件,在这里就不讨论了,不是本文的范畴;下面分析Framework事件处理流程。
SystemServer.java
可以看到,在系统启动的时候,会首先创建一个系统级别的Handler线程wmHandlerThread用于处理键盘消息(仅说明键盘消息)。然后在创建输入管理服务inputManager,InputManagerService的第二个参数就是用于处理按键消息的Handler。
InputManagerService.java
进入InputManagerService的构造函数:
这里做了重要的两件事情,第一:将SystemServer级别的Handler赋值给InputManagerService自己的消息处理Handler;第二:调用nativeInit继续进行初始化。
com_android_server_input_InputManagerService.java
那就看看本地初始化:
进入NativeInputManager构造函数:
这里需要特别注意最后两行代码。第一:创建了EventHub;第二:创建InputManager并将EventHub作为参数传入InputManager。
InputManager.cpp
接下来继续看看InputManager的构造函数:
创建了InputDispatcher和InputReader,请注意00032行,mDispatcher作为了InputReader参数,你看看InputReader的构造函数就知道为什么要这么做了;后面调用了initialize函数创建了InputReaderThread和InputDispatcherThread。InputDispatcher类是负责把键盘消息分发给当前激活的Activity窗口的,而InputReader类则是通过EventHub类来实现读取键盘事件的,InputReader实列mReader就是通过这里的InputReaderThread线程实列mReaderThread来读取键盘事件的,而InputDispatcher实例mDispatcher则是通过这里的InputDispatcherThread线程实例mDisptacherThread来分发键盘消息的;到这里,相关的组件都已经被创建了。
在systemServer.java中创建inputManager之后。将InputManagerServer进行注册,并运行start()(在第一页有相关代码)。
com_android_server_input_InputManagerService.java
会来到这里:
继续往下则会调用到InputManager.cpp的start()函数:
这个函数主要就是分别启动一个InputDispatcherThread线程和一个InputReaderThread线程来读取和分发键盘消息的了。这里的InputDispatcherThread线程对象mDispatcherThread和InputReaderThread线程对象mReaderThread是在前面的第三页中创建的,调用了它们的run函数后,就会进入到它们的threadLoop函数中去,只要threadLoop函数返回true,函数threadLoop就会一直被循环调用,于是这两个线程就起到了不断地读取和分发键盘消息的作用。
继续看loopOnce()这个函数:
这里面需要注意像神一样的函数mEventHub->getEvents()。其实现原理,还有点不是很清楚;但是其功能就是负责键盘消息的读取工作,如果当前有键盘事件发生或者有键盘事件等待处理,通过mEventHub的**getEvent(这个函数里面很有讲究,有空自己分析,这里不做深入的讲解)**函数就可以得到这个事件,然后交给processEventsLocked函数进行处理。同样需要特别注意最后一行(太长了,没有截过来);后面回解释。我们还会回来的…不过还想补充一点的就是,读取的数据的路径为:
机型为OK1000:
通过getEvents获取事件消息后,就得开始处理消息了,回到第六页00314行:
如果是一般的消息就调用*processEventsForDeviceLocked()*函数;否者去处理设备的ADDED、REMOVED、SCAN事件;那我们就先分析设备的ADD吧,因为后面的处理是在这个基础上的,回到上一页00372行:
在行00400create一个InputDevice:
所有类型的设备都在这里生产,然后统一添加到00412行的mDivices;提供给后续具体设备处理,下面就是具体设备的处理过程。
在第七页*processEventsForDeviceLocked()*函数,根据deviceId来处理相应的事件消息:
我就在想:问什么不直接到process函数呢?其实我觉得这里体现了设计模式中的单一职责原则(多态);这种设计可以有效的控制函数粒度(有个类粒度,这里自创函数粒度)的大小,函数承担的职责越多其复用的可能性就越小,并且当期中某一个职责发生变化,可能会影响其他职责的运作!继续往下走吧…
这里的每一个事件都要做一个循环处理,代码在01022行,至于为什么你看(行00993)注释就会明白了。
行02107函数processKey的原型中,有部分代码片段如下:
看到关键行02216了吧!再回头看看第三页就知道跳转到哪里去了。
总结:
一不小心来到了这里…
InputDispatcher.cpp
在函数notifyKey中有这样的代码片段:
行02421函数的功能其实很简单,主要是把EventEntry添加到一个待发的事件队列当中,源代码如下:
在看看行02424,功能就是唤醒InputDispatcherThread线程,然后就开始执行InputDispatcher的threadLoop函数,之后就调用InputDispatcher的dispatchOnce方法,代码如下:
进入行00230,其中有这样代码片段:
进入行00365,其中有这样代码片段:
行00780,查找焦点窗口,然后进入行00794
dispatchEventLocked()->
prepareDispatchCycleLocked()->
enqueueDispatchEntriesLocked()->
startDispatchCycleLocked()->
其中函数startDispatchCycleLocked()有这样代码片段:
看到publishKeyEvent()了吧!
InputTransprot.cpp
继续走:
总算send出去了。
总结:
至于外面怎么接收到消息的,后续再分析,内容太多了,自己还没有完全搞懂,等搞懂了再补上…
参考文献:
http://blog.sina.com.cn/s/blog_6268defa0101ad1o.html
http://www.cnblogs.com/haiming/p/3318614.html
http://blog.chinaunix.net/uid-27167114-id-3347185.html
http://my.oschina.net/u/994235/blog/294227
http://blog.csdn.net/zjq2008wd/article/details/39225539
http://blog.csdn.net/powq2009/article/details/8426271
http://blog.sina.com.cn/s/blog_89f592f50101394l.html
http://www.cnblogs.com/lcw/p/3374466.html
http://blog.sina.com.cn/s/blog_89f592f50101394l.html
http://blog.csdn.net/zjq2008wd/article/category/1283349
觉得本文对您有用,麻烦点赞、关注、收藏,您的肯定是我创作的无限动力,谢谢!!!