【阵列信号处理】空间匹配滤波器、锥形/非锥形最佳波束成形器、样本矩阵反演 (SMI) 研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

空间匹配滤波器(Spatial Matched Filter)是一种用于信号处理的滤波器。它的原理是通过将输入信号与预先存储的参考信号进行相关运算,从而增强目标信号并抑制噪声。空间匹配滤波器在雷达、声纳等领域广泛应用,用于目标检测、目标跟踪等任务。

锥形最佳波束成形器(Conical Beamformer)是一种用于信号处理的波束成形器。它通过调整传感器阵列中各个传感器的权重,使得阵列对特定方向的信号响应最大化,从而实现对目标信号的增强。锥形最佳波束成形器在无线通信、声纳等领域常用于信号接收和目标定位。

非锥形最佳波束成形器(Non-Conical Beamformer)是一种波束成形器的变种。与锥形最佳波束成形器不同的是,非锥形最佳波束成形器可以实现对多个目标信号的增强,而不仅仅是单个方向的信号。非锥形最佳波束成形器在多目标检测和定位等任务中具有重要应用。

样本矩阵反演(Sample Matrix Inversion)是一种用于信号处理的方法。它通过对接收到的信号进行采样和矩阵运算,估计信号源的位置和强度。样本矩阵反演在无线通信、雷达等领域常用于信号定位和信号源分离。

以上这些方法在阵列信号处理中都有广泛的研究和应用,它们可以提高信号的质量和可靠性,从而提升系统性能。

📚2 运行结果

 

 

 

 

 

 

 

 

 

 部分代码:

% We illustrate the use of tapers with the spatial matched filter for the extraction
% of a radar signal in the presence of a jamming interference source using a ULA with M = 20
% elements with $\lambda/2$ spacing. The desired radar signal is known as a target and is 
% present for only one sample in time. Here the target signal is at time sample (range gate)
% n = 100 and is at $\phi_s = 0^{\circ}$ with an array SNR of 20 dB. The jammer transmits a 
% high-power, uncorrelated waveform (white noise). The angle of the jammer is $\phi_i = 20^{\circ}$
% and its strength is 40 dB. The additive, sensor thermal noise has unit power (0 dB).
%
% Copyright 2016 - 2026, Ilias S. Konsoulas.

%% Workspace Initialization.
clc; clear; close all;

%% Signal Definitions.
M      = 20;       % Number of Array Elements.
N      = 200;      % Number of Signal Samples.
n      = 1:N;      % Sample Index Vector.
lambda = 1;        % Incoming Signal Wavelength in (m).
d      = lambda/2; % Interelement Distance in (m).
SNR    = 20;       % target volatege signal array SNR in dBs.
INR    = 40;       % interference array SNR in dBs.
phi_s  = 0;        % target azimuth angle in degrees.
phi_i  = 20;       % interference azimuth angle in degrees.

u_s  = (d/lambda)*sin(phi_s*pi/180); % Target Normalized Spatial Frequency.
u_si = (d/lambda)*sin(phi_i*pi/180); % Jammer Normalized Spatial Frequency.

s = zeros(M,N);
s(:,100) = 10^(SNR/20)*exp(-1i*2*pi*u_s*(0:M-1).')/sqrt(M);

% Uncorrelated unit power thermal noise samples drawn from a complex Gaussian distribution
w = (randn(M,N)+1i*randn(M,N))/sqrt(2);

% The interference (jammer) vector is generated by:
% v_i = exp(-1i*pi*[0:M-1]'*sin(phi_i*pi/180))/sqrt(M); mentioned in the book is wrong.
v_i = exp(-1i*2*pi*u_si*(0:M-1).')/sqrt(M);
i_x = 10^(INR/20)*v_i*(randn(1,N)+1i*randn(1,N))/sqrt(2);

%The three signals are added to produce the overall array signal
x = s + i_x + w;

% Two beamformers (steered to phi = 0.) are applied to the resulting array returns: a spatial matched
% filter and a tapered beamformer with a -50-dB sidelobe level. The resulting beamformer output
% signals are shown in Figure 11.15. The spatial matched filter is unable to reduce the jammer
% sufficiently to observe the target signal at n = 100. However, the tapered beamformer is able
% to attenuate the jammer signal below the thermal noise level and the target is easily extracted.
% The target signal is approximately 18.5 dB with the -1.5 dB loss due to the tapering loss in (11.2.24).

%% Spatial Matched Filter or Steering Vector Beamformer.
c_mf = exp(-1i*2*pi*u_s*(0:M-1).')/sqrt(M);   

% Spatial Dolph-Chebychev Window of length M = 20 with -50 dB sidelobe attenuation:
w = chebwin(M,50);

% Compute the Combined Taper by taking the Hadamard product:
c_mft = c_mf.*w;

% Normalize the combined taper vector:

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]罗日成,李卫国,李成榕.基于阵列信号处理的变压器内局部放电源多目标定位方法[J].电网技术, 2006, 30(1):5.DOI:10.3321/j.issn:1000-3673.2006.01.013.

[2]张小飞,汪飞,徐大专.阵列信号处理的理论和应用[M].国防工业出版社,2010.

[3]罗景青,保铮.雷达阵列信号处理技术的新发现(一)[J].现代雷达, 1993, 15(2):11.DOI:CNKI:SUN:XDLD.0.1993-02-015.

[4]马友科,宋万杰,吴顺君,等.基于多DSP的雷达阵列信号处理系统[J].雷达科学与技术, 2009, 7(2):4.DOI:10.3969/j.issn.1672-2337.2009.02.008.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/60457.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

chrome扩展在popup、background、content之间通信解决传输文件问题

文章目录 背景介绍案例介绍代码示例popup页面,上传文件页面popup页面,js上传代码,file文件转base64background监听消息,base64转file文件,axios上传 附-转base64后直接下载 背景介绍 示例扩展API版本MV2。 以弹…

3d 地球与卫星绕地飞行

1 创建场景 2 创建相机 3 创建地球模型 4 创建卫星中心 5 创建卫星圆环及卫星 6 创建控制器 7 创建渲染器 <template><div class"home3dMap" id"home3dMap"></div> </template><script> import * as THREE from three impo…

GD32F103*固件库移植μCOS-Ⅲ详细教程与解析(最终版本已上传,可下载)

GD32F103*固件库移植μCOS-Ⅲ详细教程与解析&#xff08;最终版本已上传&#xff0c;可下载&#xff09; GD32F103*移植μCOS-Ⅲ详细教程与解析&#xff0c;欢迎指正 文章目录 GD32F103*固件库移植μCOS-Ⅲ详细教程与解析&#xff08;最终版本已上传&#xff0c;可下载&#x…

appium自动爬取数据

爬取类容&#xff1a;推荐知识点中所有的题目 爬取方式&#xff1a;appium模拟操作获取前端数据 入门级简单实现&#xff0c;针对题目和答案是文字内容的没有提取出来 适用场景;数据不多&#xff0c;参数加密&#xff0c;反爬严格等场景 from appium import webdriver impor…

神经概率语言模型

本文主要参考《A Neural Probabilistic Language Model》这是一篇很重要的语言模型论文,发表于2003年。主要贡献如下: 提出了一种基于神经网络的语言模型&#xff0c;是较早将神经网络应用于语言模型领域的工作之一&#xff0c;具有里程碑意义。采用神经网络模型预测下一个单词…

opencv37-形态学操作-开运算(先腐蚀后膨胀)cv2.morphologyEx()-参数 op 设置为“cv2.MORPH_OPEN”

腐蚀操作和膨胀操作是形态学运算的基础&#xff0c;将腐蚀和膨胀操作进行组合&#xff0c;就可以实现开运算、闭运算&#xff08;关运算&#xff09;、形态学梯度&#xff08;MorphologicalGradient&#xff09;运算、礼帽运算&#xff08;顶帽运算&#xff09;、黑帽运算、击中…

uniapp:图片验证码检验问题处理

图形验证码功能实现 uniapp&#xff1a;解决图形验证码问题及利用arraybuffer二进制转base64格式图片&#xff08;后端传的图片数据形式&#xff1a;x00\x10JFIF\x00\x01\x02\x00…&#xff09;_❆VE❆的博客-CSDN博客 UI稿&#xff1a; 需求&#xff1a;向后端请求验证码图片&…

Stable Diffusion AI绘画学习指南【本地环境搭建win+mac】

一、硬件配配置要求 系统&#xff1a;windows 10 / Mac os 硬盘&#xff1a;C 盘预留 15GB 以上&#xff0c;其他盘 50GB 以上,Stable Ddiffusion的很多大模型都是以 GB 起步。 显卡&#xff1a;4GB 以上&#xff0c;建议 8GB, 效率高&#xff0c;能玩大尺寸的图 CPU&…

[MAUI]模仿微信“按住-说话”的交互实现

今天使用这个控件&#xff0c;做一个模仿微信“按住-说话”的小功能&#xff0c;最终效果如下&#xff1a; 使用.NET MAUI实现跨平台支持&#xff0c;本项目可运行于Android、iOS平台。 创建页面布局 新建.NET MAUI项目&#xff0c;命名HoldAndSpeak MainPage.xaml中创建一个…

Flink读取mysql数据库(java)

代码如下: package com.weilanaoli.ruge.vlink.flink;import com.ververica.cdc.connectors.mysql.source.MySqlSource; import com.ververica.cdc.connectors.mysql.table.StartupOptions; import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema; import org…

【数据结构|二叉树遍历】递归与非递归实现前序遍历、中序遍历、后序遍历

递归与非递归实现二叉树的前序遍历、中序遍历、后序遍历。 二叉树图 定义 前序遍历&#xff08;Preorder Traversal&#xff09;&#xff1a; 前序遍历的顺序是先访问根节点&#xff0c;然后按照先左后右的顺序访问子节点。对于上面的二叉树&#xff0c;前序遍历的结果是&…

【React】搭建React项目

最近自己在尝试搭建react项目&#xff0c;其实react项目搭建没有想象中的那么复杂&#xff0c;我们只需要使用一个命令把React架子搭建好&#xff0c;其他的依赖可以根据具体的需求去安装&#xff0c;比如AntDesignMobile的UI框架&#xff0c;执行npm install antd-mobile --sa…

【计算机网络】NAT及Bridge介绍

OSI七层模型 七层模型介绍及举例 为通过网络将人类可读信息通过网络从一台设备传输到另一台设备&#xff0c;必须在发送设备沿 OSI 模型的七层结构向下传输数据&#xff0c;然后在接收端沿七层结构向上传输数据。 数据在 OSI 模型中如何流动 库珀先生想给帕尔梅女士发一封电…

android kernel移植5-RK3568

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言1.添加开发板默认配置文件前言 前面我们已经学会了移植uboot,其实就是把瑞芯微的关于uboot的一些文件的名字和编译指定的文件改为自己定义的问价和名字,那么接下来的Android kernel其实也是…

探索Streamlit中强大而灵活的 st.write() 函数(五):构建丰富多样的应用界面

文章目录 1 前言2 显示HTML的内容3 显示Markdown内容4 显示代码块5 显示DataFrame的交互式表格6 显示音频和视频7 显示图表8 显示图片9 显示地图10 显示PDF文件11 显示文件下载链接12 结语 1 前言 在这篇博文中&#xff0c;我们将着重介绍Streamlit中一个核心而重要的函数&…

java序列化框架全集讲解

一、简介 Java序列化框架是一种用于在Java应用程序中将对象转换为字节流或从字节流反序列化为对象的工具。序列化是将对象的状态转换为字节流的过程&#xff0c;以便可以将其存储在文件中、通过网络传输或在不同的系统之间共享。反序列化是将字节流转换回对象的过程。 Java序列…

【黑马头条之kafka及异步通知文章上下架】

本笔记内容为黑马头条项目的kafka及异步通知文章上下架部分 目录 一、kafka概述 二、kafka安装配置 三、kafka入门 四、kafka高可用设计 1、集群 2、备份机制(Replication&#xff09; 五、kafka生产者详解 1、发送类型 2、参数详解 六、kafka消费者详解 1、消费者…

Django实现音乐网站 ⑹

使用Python Django框架制作一个音乐网站&#xff0c; 本篇主要是在添加编辑过程中对后台歌手功能优化及表模型名称修改、模型继承内容。 目录 表模型名称修改 模型继承 创建抽象基类 其他模型继承 更新表结构 歌手新增、编辑优化 表字段名称修改 隐藏单曲数和专辑数 姓…

复制带随机指针的链表【构造链表深拷贝】

复制带随机指针的链表 文章目录 复制带随机指针的链表 链表复制要求 解题思路 1、拷贝所有节点&#xff0c;并放在对应原节点的后面 2.将每个 random 指向对应的位置。 3.将复制的链表解下来&#xff0c;尾插到一起&#xff0c;并将原链表恢复 源码 先导知识点&#…

C语言手撕单链表

一、链表的概念 链表是一种物理存储结构上非连续、非顺序的存储结构&#xff0c;也就是内存存储不是像顺序表那么连续存储&#xff0c;而是以结点的形式一块一块存储在堆上的&#xff08;用动态内存开辟&#xff09;。 既然在内存上不是连续存储&#xff0c;那我们如何将这一…