【黑马头条之kafka及异步通知文章上下架】

本笔记内容为黑马头条项目的kafka及异步通知文章上下架部分

目录

一、kafka概述

二、kafka安装配置

三、kafka入门

四、kafka高可用设计

1、集群

2、备份机制(Replication)

五、kafka生产者详解

1、发送类型

2、参数详解

六、kafka消费者详解

1、消费者组

2、消息有序性

3、提交和偏移量

七、springboot集成kafka

1、入门

2、传递消息为对象

八、自媒体文章上下架功能完成

1、需求分析

2、流程说明

3、接口定义

4、自媒体文章上下架-功能实现

5、消息通知article端文章上下架


一、kafka概述


消息中间件对比

特性ActiveMQRabbitMQRocketMQKafka
开发语言javaerlangjavascala
单机吞吐量万级万级10万级100万级
时效性msusmsms级以内
可用性高(主从)高(主从)非常高(分布式)非常高(分布式)
功能特性成熟的产品、较全的文档、各种协议支持好并发能力强、性能好、延迟低MQ功能比较完善,扩展性佳只支持主要的MQ功能,主要应用于大数据领域

消息中间件对比-选择建议

消息中间件建议
Kafka追求高吞吐量,适合产生大量数据的互联网服务的数据收集业务
RocketMQ可靠性要求很高的金融互联网领域,稳定性高,经历了多次阿里双11考验
RabbitMQ性能较好,社区活跃度高,数据量没有那么大,优先选择功能比较完备的RabbitMQ

kafka介绍

Kafka 是一个分布式流媒体平台,类似于消息队列或企业消息传递系统。kafka官网:Apache Kafka  

kafka介绍-名词解释

  • producer:发布消息的对象称之为主题生产者(Kafka topic producer)

  • topic:Kafka将消息分门别类,每一类的消息称之为一个主题(Topic)

  • consumer:订阅消息并处理发布的消息的对象称之为主题消费者(consumers)

  • broker:已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker)。 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

二、kafka安装配置


Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper

Docker安装zookeeper

下载镜像:

docker pull zookeeper:3.4.14

创建容器

docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14

Docker安装kafka

下载镜像:  

docker pull wurstmeister/kafka:2.12-2.3.1

创建容器         

docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=192.168.200.130 \
--env KAFKA_ZOOKEEPER_CONNECT=192.168.200.130:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.200.130:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1

三、kafka入门


  • 生产者发送消息,多个消费者只能有一个消费者接收到消息

  • 生产者发送消息,多个消费者都可以接收到消息

(1)创建kafka-demo项目,导入依赖

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
</dependency>

(2)生产者发送消息

package com.heima.kafka.sample;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

/**
 * 生产者
 */
public class ProducerQuickStart {

    public static void main(String[] args) {
        //1.kafka的配置信息
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");
        //发送失败,失败的重试次数
        properties.put(ProducerConfig.RETRIES_CONFIG,5);
        //消息key的序列化器
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        //消息value的序列化器
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");

        //2.生产者对象
        KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);

        //封装发送的消息
        ProducerRecord<String,String> record = new ProducerRecord<String, String>("itheima-topic","100001","hello kafka");

        //3.发送消息
        producer.send(record);

        //4.关闭消息通道,必须关闭,否则消息发送不成功
        producer.close();
    }

}

(3)消费者接收消息

package com.heima.kafka.sample;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

/**
 * 消费者
 */
public class ConsumerQuickStart {

    public static void main(String[] args) {
        //1.添加kafka的配置信息
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");
        //消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");
        //消息的反序列化器
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        //2.消费者对象
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);

        //3.订阅主题
        consumer.subscribe(Collections.singletonList("itheima-topic"));

        //当前线程一直处于监听状态
        while (true) {
            //4.获取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.key());
                System.out.println(consumerRecord.value());
            }
        }

    }

}

总结

  • 生产者发送消息,多个消费者订阅同一个主题,只能有一个消费者收到消息(一对一)

  • 生产者发送消息,多个消费者订阅同一个主题,所有消费者都能收到消息(一对多)

四、kafka高可用设计


1、集群

  • Kafka 的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成

  • 这样如果集群中某一台机器宕机,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一

2、备份机制(Replication)

Kafka 中消息的备份又叫做 副本(Replica)

Kafka 定义了两类副本:

  • 领导者副本(Leader Replica)

  • 追随者副本(Follower Replica)

同步方式

ISR(in-sync replica)需要同步复制保存的follower

如果leader失效后,需要选出新的leader,选举的原则如下:

第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的

第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定

第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整

五、kafka生产者详解


1、发送类型

同步发送

使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());

异步发送

调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数

//异步消息发送
producer.send(kvProducerRecord, new Callback() {
    @Override
    public void onCompletion(RecordMetadata recordMetadata, Exception e) {
        if(e != null){
            System.out.println("记录异常信息到日志表中");
        }
        System.out.println(recordMetadata.offset());
    }
});

2、参数详解

ack

代码的配置方式:

//ack配置  消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

确认机制说明
acks=0生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快
acks=1(默认值)只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应
acks=all只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应

retries  

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

代码中配置方式:

//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);

消息压缩

默认情况下, 消息发送时不会被压缩。

代码中配置方式:

//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。  

六、kafka消费者详解


1、消费者组

  • 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体

  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者

    • 所有的消费者都在一个组中,那么这就变成了queue模型

    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型

2、消息有序性

应用场景:

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致

  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序

topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

3、提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做_consumer_offset的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡

正常的情况

如果消费者2挂掉以后,会发生再均衡,消费者2负责的分区会被其他消费者进行消费

再均衡后不可避免会出现一些问题

问题一:

如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

问题二:

如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

如果想要解决这些问题,还要知道目前kafka提交偏移量的方式:

提交偏移量的方式有两种,分别是自动提交偏移量和手动提交

  • 自动提交偏移量

当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

  • 手动提交 ,当enable.auto.commit被设置为false可以有以下三种提交方式
    • 提交当前偏移量(同步提交)

    • 异步提交

    • 同步和异步组合提交

1.提交当前偏移量(同步提交)  

enable.auto.commit设置为false,让应用程序决定何时提交偏移量。使用commitSync()提交偏移量,commitSync()将会提交poll返回的最新的偏移量,所以在处理完所有记录后要确保调用了commitSync()方法。否则还是会有消息丢失的风险。

只要没有发生不可恢复的错误,commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。

while (true){
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
        System.out.println(record.key());
        try {
            consumer.commitSync();//同步提交当前最新的偏移量
        }catch (CommitFailedException e){
            System.out.println("记录提交失败的异常:"+e);
        }

    }
}

2.异步提交

手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。当然我们可以减少手动提交的频率,但这个会增加消息重复的概率(和自动提交一样)。另外一个解决办法是,使用异步提交的API。

while (true){
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
        System.out.println(record.key());
    }
    consumer.commitAsync(new OffsetCommitCallback() {
        @Override
        public void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {
            if(e!=null){
                System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);
            }
        }
    });
}

3.同步和异步组合提交

异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

try {
    while (true){
        ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
        for (ConsumerRecord<String, String> record : records) {
            System.out.println(record.value());
            System.out.println(record.key());
        }
        consumer.commitAsync();
    }
}catch (Exception e){+
    e.printStackTrace();
    System.out.println("记录错误信息:"+e);
}finally {
    try {
        consumer.commitSync();
    }finally {
        consumer.close();
    }
}

七、springboot集成kafka


1、入门

1.导入spring-kafka依赖信息

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <!-- kafkfa -->
    <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
        <exclusions>
            <exclusion>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
    </dependency>
</dependencies>

2.在resources下创建文件application.yml

server:
  port: 9991
spring:
  application:
    name: kafka-demo
  kafka:
    bootstrap-servers: 192.168.200.130:9092
    producer:
      retries: 10
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    consumer:
      group-id: ${spring.application.name}-test
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer

3.消息生产者

package com.heima.kafka.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloController {

    @Autowired
    private KafkaTemplate<String,String> kafkaTemplate;

    @GetMapping("/hello")
    public String hello(){
        kafkaTemplate.send("itcast-topic","黑马程序员");
        return "ok";
    }
}

4.消息消费者

package com.heima.kafka.listener;

import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;

@Component
public class HelloListener {

    @KafkaListener(topics = "itcast-topic")
    public void onMessage(String message){
        if(!StringUtils.isEmpty(message)){
            System.out.println(message);
        }

    }
}

2、传递消息为对象

目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式

方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强,本章节不介绍

方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可,本项目采用这种方式

发送消息

@GetMapping("/hello")
public String hello(){
    User user = new User();
    user.setUsername("xiaowang");
    user.setAge(18);

    kafkaTemplate.send("user-topic", JSON.toJSONString(user));

    return "ok";
}

接收消息

package com.heima.kafka.listener;

import com.alibaba.fastjson.JSON;
import com.heima.kafka.pojo.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;

@Component
public class HelloListener {

    @KafkaListener(topics = "user-topic")
    public void onMessage(String message){
        if(!StringUtils.isEmpty(message)){
            User user = JSON.parseObject(message, User.class);
            System.out.println(user);
        }

    }
}

八、自媒体文章上下架功能完成


1、需求分析

  • 已发表且已上架的文章可以下架

  • 已发表且已下架的文章可以上架

2、流程说明

3、接口定义

说明
接口路径/api/v1/news/down_or_up
请求方式POST
参数DTO
响应结果ResponseResult

DTO

@Data
public class WmNewsDto {
    
    private Integer id;
    /**
    * 是否上架  0 下架  1 上架
    */
    private Short enable;
                       
}

ResponseResult

4、自媒体文章上下架-功能实现

1.接口定义

在heima-leadnews-wemedia工程下的WmNewsController新增方法

@PostMapping("/down_or_up")
public ResponseResult downOrUp(@RequestBody WmNewsDto dto){
    return null;
}

在WmNewsDto中新增enable属性 ,完整的代码如下:

package com.heima.model.wemedia.dtos;

import lombok.Data;

import java.util.Date;
import java.util.List;

@Data
public class WmNewsDto {
    
    private Integer id;
     /**
     * 标题
     */
    private String title;
     /**
     * 频道id
     */
    private Integer channelId;
     /**
     * 标签
     */
    private String labels;
     /**
     * 发布时间
     */
    private Date publishTime;
     /**
     * 文章内容
     */
    private String content;
     /**
     * 文章封面类型  0 无图 1 单图 3 多图 -1 自动
     */
    private Short type;
     /**
     * 提交时间
     */
    private Date submitedTime; 
     /**
     * 状态 提交为1  草稿为0
     */
    private Short status;
     
     /**
     * 封面图片列表 多张图以逗号隔开
     */
    private List<String> images;

    /**
     * 上下架 0 下架  1 上架
     */
    private Short enable;
}

2.业务层编写

在WmNewsService新增方法

/**
 * 文章的上下架
 * @param dto
 * @return
 */
public ResponseResult downOrUp(WmNewsDto dto);

实现方法

/**
 * 文章的上下架
 * @param dto
 * @return
 */
@Override
public ResponseResult downOrUp(WmNewsDto dto) {
    //1.检查参数
    if(dto.getId() == null){
        return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
    }

    //2.查询文章
    WmNews wmNews = getById(dto.getId());
    if(wmNews == null){
        return ResponseResult.errorResult(AppHttpCodeEnum.DATA_NOT_EXIST,"文章不存在");
    }

    //3.判断文章是否已发布
    if(!wmNews.getStatus().equals(WmNews.Status.PUBLISHED.getCode())){
        return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID,"当前文章不是发布状态,不能上下架");
    }

    //4.修改文章enable
    if(dto.getEnable() != null && dto.getEnable() > -1 && dto.getEnable() < 2){
        update(Wrappers.<WmNews>lambdaUpdate().set(WmNews::getEnable,dto.getEnable())
                .eq(WmNews::getId,wmNews.getId()));
    }
    return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
}

3.控制器

@PostMapping("/down_or_up")
public ResponseResult downOrUp(@RequestBody WmNewsDto dto){
    return wmNewsService.downOrUp(dto);
}

测试

5、消息通知article端文章上下架

1.在heima-leadnews-common模块下导入kafka依赖

<!-- kafkfa -->
<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
</dependency>

2.在自媒体端的nacos配置中心配置kafka的生产者

spring:
  kafka:
    bootstrap-servers: 192.168.200.130:9092
    producer:
      retries: 10
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

3.在自媒体端文章上下架后发送消息

//发送消息,通知article端修改文章配置
if(wmNews.getArticleId() != null){
    Map<String,Object> map = new HashMap<>();
    map.put("articleId",wmNews.getArticleId());
    map.put("enable",dto.getEnable());
    kafkaTemplate.send(WmNewsMessageConstants.WM_NEWS_UP_OR_DOWN_TOPIC,JSON.toJSONString(map));
}

常量类:

public class WmNewsMessageConstants {

    public static final String WM_NEWS_UP_OR_DOWN_TOPIC="wm.news.up.or.down.topic";
}

4.在article端的nacos配置中心配置kafka的消费者

spring:
  kafka:
    bootstrap-servers: 192.168.200.130:9092
    consumer:
      group-id: ${spring.application.name}
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer

5.在article端编写监听,接收数据

package com.heima.article.listener;

import com.alibaba.fastjson.JSON;
import com.heima.article.service.ApArticleConfigService;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

import java.util.Map;

@Component
@Slf4j
public class ArtilceIsDownListener {

    @Autowired
    private ApArticleConfigService apArticleConfigService;

    @KafkaListener(topics = WmNewsMessageConstants.WM_NEWS_UP_OR_DOWN_TOPIC)
    public void onMessage(String message){
        if(StringUtils.isNotBlank(message)){
            Map map = JSON.parseObject(message, Map.class);
            apArticleConfigService.updateByMap(map);
            log.info("article端文章配置修改,articleId={}",map.get("articleId"));
        }
    }
}

6.修改ap_article_config表的数据

新建ApArticleConfigService

package com.heima.article.service;

import com.baomidou.mybatisplus.extension.service.IService;
import com.heima.model.article.pojos.ApArticleConfig;

import java.util.Map;

public interface ApArticleConfigService extends IService<ApArticleConfig> {

    /**
     * 修改文章配置
     * @param map
     */
    public void updateByMap(Map map);
}

实现类:

package com.heima.article.service.impl;

import com.baomidou.mybatisplus.core.toolkit.Wrappers;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.heima.article.mapper.ApArticleConfigMapper;
import com.heima.article.service.ApArticleConfigService;
import com.heima.model.article.pojos.ApArticleConfig;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import java.util.Map;

@Service
@Slf4j
@Transactional
public class ApArticleConfigServiceImpl extends ServiceImpl<ApArticleConfigMapper, ApArticleConfig> implements ApArticleConfigService {


    /**
     * 修改文章配置
     * @param map
     */
    @Override
    public void updateByMap(Map map) {
        //0 下架 1 上架
        Object enable = map.get("enable");
        boolean isDown = true;
        if(enable.equals(1)){
            isDown = false;
        }
        //修改文章配置
        update(Wrappers.<ApArticleConfig>lambdaUpdate().eq(ApArticleConfig::getArticleId,map.get("articleId")).set(ApArticleConfig::getIsDown,isDown));

    }
}

结束!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/60428.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Django实现音乐网站 ⑹

使用Python Django框架制作一个音乐网站&#xff0c; 本篇主要是在添加编辑过程中对后台歌手功能优化及表模型名称修改、模型继承内容。 目录 表模型名称修改 模型继承 创建抽象基类 其他模型继承 更新表结构 歌手新增、编辑优化 表字段名称修改 隐藏单曲数和专辑数 姓…

复制带随机指针的链表【构造链表深拷贝】

复制带随机指针的链表 文章目录 复制带随机指针的链表 链表复制要求 解题思路 1、拷贝所有节点&#xff0c;并放在对应原节点的后面 2.将每个 random 指向对应的位置。 3.将复制的链表解下来&#xff0c;尾插到一起&#xff0c;并将原链表恢复 源码 先导知识点&#…

C语言手撕单链表

一、链表的概念 链表是一种物理存储结构上非连续、非顺序的存储结构&#xff0c;也就是内存存储不是像顺序表那么连续存储&#xff0c;而是以结点的形式一块一块存储在堆上的&#xff08;用动态内存开辟&#xff09;。 既然在内存上不是连续存储&#xff0c;那我们如何将这一…

第28天-Kubernetes架构,集群部署,Ingress,项目部署,Dashboard

1.K8S集群部署 1.1.k8s快速入门 1.1.1.简介 Kubernetes简称k8s&#xff0c;是用于自动部署&#xff0c;扩展和管理容器化应用程序的开源系统。 中文官网&#xff1a;https://kubernetes.io/zh/中文社区&#xff1a;https://www.kubernetes.org.cn/官方文档&#xff1a;https…

保护模式中段选择子权限校验逻辑详解

保护模式中段选择子权限校验逻辑详解 CPLRPLDPL权限校验逻辑测试 CPL CPL是当前进程的权限级别(Current Privilege Level)&#xff0c;是当前正在执行的代码所在的段的特权级&#xff0c;存在于cs段选择子的后两位的低两位。 段选择子可见部分的数据结构如下&#xff1a; 举例…

基于SpringBoot+Vue的漫画网站设计与实现(源码+LW+部署文档等)

博主介绍&#xff1a; 大家好&#xff0c;我是一名在Java圈混迹十余年的程序员&#xff0c;精通Java编程语言&#xff0c;同时也熟练掌握微信小程序、Python和Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我擅长在JavaWeb、SSH、SSM、SpringBoot等框架…

智能指针shared_ptr:自定义删除器

重点&#xff1a; 1.普通指针转化成智能指针。 2.智能指针创建的时候&#xff0c;第二个参数是自定义删除器&#xff0c;默认情况下&#xff0c;shared_ptr调用delete()函数。 class A { public:void Get() { cout << b << endl; }; private:int b{ 10 }; };clas…

在排序数组中查找元素的第一个和最后一个位置——力扣34

文章目录 题目描述法一 二分查找 题目描述 法一 二分查找 int bsearch_1(int l, int r) {while (l < r){int mid (l r)/2;if (check(mid)) r mid;else l mid 1;}return l; }int bsearch_2(int l, int r) {while (l < r){int mid ( l r 1 ) /2;if (check(mid)) l …

MobPush iOS SDK iOS实时活动

开发工具&#xff1a;Xcode 功能需要: SwiftUI实现UI页面&#xff0c;iOS16.1以上系统使用 功能使用: 需应用为启动状态 功能说明 iOS16.1 系统支持实时活动功能&#xff0c;可以在锁定屏幕上实时获知各种事情的进展&#xff0c;MobPushSDK iOS 4.0.3版本已完成适配&#xf…

序列建模简史(DIN/DIEN/DSIN/BST/MIMN/SIM/ETA/SDIM/TWIN)

序列建模简史(DIN/DIEN/DSIN/BST/MIMN/SIM/ETA/SDIM/TWIN) 史前史 在用户序列专门用于建模之前&#xff0c;一般对序列的建模的处理就是将所有序列行为进行sum/avg pooling操作&#xff0c;将用户的多个序列行为简单聚合成一个Embedding&#xff0c;然后和其他特征一起拼接。…

ansible-playbook roles模块编写lnmp剧本

目录 一&#xff1a;集中式编写lnmp剧本 二&#xff1a;分布式安装lnmp 1、nginx 配置 2、mysql配置 3、php配置 4、运行剧本 一&#xff1a;集中式编写lnmp剧本 vim /etc/ansible/lnmp.yml- name: lnmp playhosts: dbserversremote_user: roottasks:- name: perpare condif…

谷歌云 | 电子商务 | 如何更好地管理客户身份以支持最佳的用户体验

【本文由Cloud Ace整理发布。Cloud Ace是谷歌云全球战略合作伙伴&#xff0c;拥有 300 多名工程师&#xff0c;也是谷歌最高级别合作伙伴&#xff0c;多次获得 Google Cloud 合作伙伴奖。作为谷歌托管服务商&#xff0c;我们提供谷歌云、谷歌地图、谷歌办公套件、谷歌云认证培训…

嵌入式开发学习(STC51-10-直流电机)

内容 直流电机工作约5S后停止 直流电机简介 直流电机是指能将直流电能转换成机械能&#xff08;直流电动机&#xff09;或将机械能转换成直流电能&#xff08;直流发电机&#xff09;的旋转电机&#xff1b; 直流电机的结构应由定子和转子两大部分组成&#xff1b; 直流电…

k8s概念-pv和pvc

回到目录 kubernetes存储卷的分类太丰富了,每种类型都要写相应的接口与参数才行&#xff0c;这就让维护与管理难度加大。 persistenvolume(PV) 是配置好的一段存储(可以是任意类型的存储卷) 也就是说将网络存储共享出来,配置定义成PV。 PersistentVolumeClaim(PVC)是用户pod使…

麦肯锡战略思维四大原则

麦肯锡战略思维四大原则 曾任职麦肯锡、安永等国家国际知名咨询机构的周正元&#xff0c;在其著作《麦肯锡结构化战略思维》将其系统的整理呈现出来&#xff0c;便于学习和使用。 模型介绍 工作中的你&#xff0c;是不是经常遇到复杂问题&#xff0c;六神无主&#xff1f; 专业…

【树形DP+换根思想】2022牛客多校加赛 H

登录—专业IT笔试面试备考平台_牛客网 题意&#xff1a; 思路&#xff1a; 这个虽然是树形DP&#xff0c;却用了换根的思想.... 首先&#xff0c;后缀0的个数可以转化成min(cnt2,cnt5)&#xff0c;其中cnt2为2的因子个数&#xff0c;cnt5为5的因子个数 然后进行DP 设dp[u]…

openGauss学习笔记-31 openGauss 高级数据管理-索引

文章目录 openGauss学习笔记-31 openGauss 高级数据管理-索引31.1 语法格式31.2 参数说明31.3 示例 openGauss学习笔记-31 openGauss 高级数据管理-索引 索引是一个指向表中数据的指针。一个数据库中的索引与一本书的索引目录是非常相似的。 索引可以用来提高数据库查询性能&…

解决:树莓派VNC连接屏幕显示不全

目录 前导&#xff1a;我在重新烧录玩树莓派系统&#xff0c;开启完VNC并连接后&#xff0c;发现我的树莓派远程桌面屏幕显示不全&#xff0c;看着很难受&#xff01; PS&#xff1a;开启VNC服务的过程 问题如下现象&#xff1a; 问题分析&#xff1a;当树莓派通过VNC连接时&…

ThreadLocal原理

ThreadLocal原理 ThreadLocal对象new出来存放到堆中&#xff0c;ThreadLocal引用是存放在栈里 Thread 类有个 ThreadLocalMap 成员变量&#xff0c;Map的key是Threadlocal 对象&#xff0c;value是你要存放的线程局部变量。 public void set(T value) {//获取当前线程Thread&…

springboot+vue农业技术信息管理系统_9927h

随着信息时代的发展&#xff0c;计算机迅速普及&#xff0c;传统的农业信息管理方式显得不够快捷&#xff0c;这时我们就需要创造更加便利的管理方法&#xff0c;对农业信息进行统计&#xff0c;便于统一管理。将传统管理方式转变为信息、智能化显得尤为重要&#xff0c;农业信…