分布式应用:Zookeeper 集群与kafka 集群部署

目录

一、理论

1.Zookeeper 

 2.部署 Zookeeper 集群

3.消息队列

 4.Kafka

5.部署 kafka 集群

6.Filebeat+Kafka+ELK

二、实验

1.Zookeeper 集群部署

2.kafka集群部署

3.Filebeat+Kafka+ELK

三、问题

         1.解压文件异常

2.kafka集群建立失败

3.启动 filebeat报错

4.VIM报错

5. kibana无法匹配关键字

四、总结


一、理论

1.Zookeeper 

(1)概念

官方下载地址:https://archive.apache.org/dist/zookeeper/

(2)定义

Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。

(3)工作机制

Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。

也就是说 Zookeeper = 文件系统 + 通知机制。
43c2fa4ead874095baa4290945bdc4bb.png

 (4)特点

①Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。

②Zookeepe集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器。

③全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。

④更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出。

⑤数据更新原子性,一次数据更新要么成功,要么失败。

⑥实时性,在一定时间范围内,Client能读到最新数据。

011bef60924a4d15ade796eb0eff6b26.png

 (5)数据结构

ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识。

8b41e0b2035144e8bc763468bba8c679.png

(6)应用场景

提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。

①统一命名服务
在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。

②统一配置管理
1)分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上。

2)配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦 Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。

③ 统一集群管理
1)分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。

2)ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。

④ 服务器动态上下线
客户端能实时洞察到服务器上下线的变化。

1.5.5 软负载均衡
在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。
 

(7)选举机制

① 第一次启动选举机制
假设有5台服务器:

1)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;

2)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING。

3)服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;

4)服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;

5)服务器5启动,和服务器4一样当小弟。

90f5411688284276bb1447ceba8e8b92.png

②非第一次启动选举机制
1)当ZooKeeper 集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:

【1】服务器初始化启动。

【2】服务器运行期间无法和Leader保持连接。

2)而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:

【1】集群中本来就已经存在一个Leader。

对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和 Leader机器建立连接,并进行状态同步即可。
【2】集群中确实不存在Leader。

假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举。

选举Leader规则:

EPOCH大的直接胜出
EPOCH相同,事务id大的胜出
事务id相同,服务器id大的胜出
注意:

SID:服务器ID。用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致。
ZXID:事务ID。ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这和ZooKeeper服务器对于客户端“更新请求”的处理逻辑速度有关。
Epoch:每个Leader任期的代号。没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加。
97eb9538cce949ac965493d24b7d20fc.png

 2.部署 Zookeeper 集群

(1)实验环境

准备 3 台服务器做 Zookeeper 集群:

192.168.204.61

192.168.204.62

192.168.204.63

(2)写一个安装脚本

在server1上写一个安装脚本,用于安装Zookeeper。

vim /yujish/zookeeper001.sh

 #!/bin/bash
 #部署Zookeeper集群,server1的安装脚本
 ​
 ##1.安装前准备
 #关闭防火墙
 systemctl stop firewalld
 systemctl disable firewalld
 setenforce 0
 ​
 #安装 JDK 环境。如果服务器无法连接外网,需要先搭建本地yum仓库
 yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
 java -version
 ​
 #zookeeper下载安装包
 #官方下载地址:https://archive.apache.org/dist/zookeeper/
 ​
 #wget命令是Linux系统用于从Web下载文件的命令行工具,服务器联通外网的情况下,可使用此种方法下载软件包。如果服务器无法连接外网,需要提前准备好软件包,放入/opt/目录下。
 cd /opt/
 wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin.tar.gz
 ​
 ##2.安装 Zookeeper。提前将zookeeper的安装包传到/opt/目录下。
 cd /opt/
 tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz
 mv apache-zookeeper-3.5.7-bin /usr/local/zookeeper-3.5.7
 ​
 ##3.修改配置文件
 cd /usr/local/zookeeper-3.5.7/conf/
 cp zoo_sample.cfg zoo.cfg
 ​
 #修改第12行,指定保存Zookeeper中的数据的目录,目录需要单独创建
 sed -i '12c dataDir=/usr/local/zookeeper-3.5.7/data' /usr/local/zookeeper-3.5.7/conf/zoo.cfg
 #在第12行下方添加内容,指定存放日志的目录,目录需要单独创建
 sed -i '12a dataLogDir=/usr/local/zookeeper-3.5.7/logs' /usr/local/zookeeper-3.5.7/conf/zoo.cfg
 #在配置文件中添加集群信息
 echo "server.1=192.168.204.51:3188:3288
 server.2=192.168.204.62:3188:3288
 server.3=192.168.204.63:3188:3288"  >> /usr/local/zookeeper-3.5.7/conf/zoo.cfg
 ​
 ​
 #在每个节点上创建数据目录和日志目录
 mkdir /usr/local/zookeeper-3.5.7/data
 mkdir /usr/local/zookeeper-3.5.7/logs
 ​
 #在每个节点的dataDir指定的目录下创建一个 myid 的文件,注意每个节点的myid不能相同
 echo 1 > /usr/local/zookeeper-3.5.7/data/myid
 ​
 ​
 ##4.配置 Zookeeper 启动脚本,将zookeeper加入系统服务管理
 cat <<EOF > /etc/init.d/zookeeper
 #!/bin/bash
 #chkconfig:2345 20 90
 #description:Zookeeper Service Control Script
 ZK_HOME='/usr/local/zookeeper-3.5.7'
 case $1 in
 start)
     echo "---------- zookeeper 启动 ------------"
     $ZK_HOME/bin/zkServer.sh start
     ;;
 stop)
     echo "---------- zookeeper 停止 ------------"
     $ZK_HOME/bin/zkServer.sh stop
     ;;
 restart)
     echo "---------- zookeeper 重启 ------------"
     $ZK_HOME/bin/zkServer.sh restart
     ;;
 status)
     echo "---------- zookeeper 状态 ------------"
     $ZK_HOME/bin/zkServer.sh status
     ;;
 *)
     echo "Usage: $0 {start|stop|restart|status}"
 esac
 EOF
 ​
 #为脚本增加执行权限。添加到启动服务,设置为开机自启。
 chmod +x /etc/init.d/zookeeper
 chkconfig --add zookeeper
 #chkconfig --list zookeeper 可查看启动服务

配置文件zoo.cfg注释:

tickTime=2000   #通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒
 initLimit=10    #Leader和Follower初始连接时能容忍的最多心跳数(tickTime的数量),这里表示为10*2s
 syncLimit=5     #Leader和Follower之间同步通信的超时时间,这里表示如果超过5*2s,Leader认为Follwer死掉,并从服务器列表中删除Follwer
 dataDir=/usr/local/zookeeper-3.5.7/data      #修改,指定保存Zookeeper中的数据的目录,目录需要单独创建
 dataLogDir=/usr/local/zookeeper-3.5.7/logs   #添加,指定存放日志的目录,目录需要单独创建
 clientPort=2181   #客户端连接端口
 #添加集群信息
 server.1=192.168.204.61:3188:3288
 server.2=192.168.204.62:3188:3288
 server.3=192.168.204.63:3188:3288
 ​
 -------------------------------------------------------------------------------------
 server.A=B:C:D
 ●A是一个数字,表示这个是第几号服务器。集群模式下需要在zoo.cfg中dataDir指定的目录下创建一个文件myid,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
 ●B是这个服务器的地址。
 ●C是这个服务器Follower与集群中的Leader服务器交换信息的端口。
 ●D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
 -------------------------------------------------------------------------------------

(3)写第二个脚本(用于传输和执行脚本)

在server1写第二个脚本,用于将安装脚本传给给server2和server3,并执行脚本和启动服务。

vim /yujish/zk.sh

 #!/bin/bash
 #descripe:该脚本用于传输和执行zookeeper的安装脚本。即在server1上,将安装脚本传给server2、server3,并修改myid。之后依次执行。
 ​
 #root密码
 pass=1234
 #三台服务器的ip
 ip1=192.168.204.61
 ip2=192.168.204.62
 ip3=192.168.204.63
 ​
 #复制脚本并命名为002,将myid修改为2。用于传给server2执行。
 cp /opt/zookeeper001.sh  /opt/zookeeper002.sh
 sed -i '/zookeeper-3.5.7/data/myid/c echo 2>/usr/local/zookeeper-3.5.7/data/myid
  '  /yujish/zookeeper002.sh
 ​
 #安装expect工具
 yum install -y expect
 ​
 #将002脚本传给server2
 /usr/bin/expect <<-EOF
 spawn scp /opt/zookeeper002.sh ${ip2}:/opt/
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF
 ​
 #复制脚本并命名为003,修改myid为3。用于传给server3执行。
 cp /opt/zookeeper001.sh  /opt/zookeeper003.sh
 sed -i '/zookeeper-3.5.7/data/myid/c echo 3>/usr/local/zookeeper-3.5.7/data/myid
  '  /opt/zookeeper003.sh
 ​
 #将002脚本传给server3
 /usr/bin/expect <<-EOF
 spawn scp /opt/zookeeper002.sh ${ip3}:/opt/
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF
 ​
 #执行server1中的脚本,安装zookeeper
 bash /opt/zookeeper001.sh
 ​
 #执行server2中的脚本,安装zookeeper
 /usr/bin/expect <<-EOF
 spawn ssh ${ip2} bash /opt/zookeeper002.sh
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF
 ​
 #执行server3中的脚本,安装zookeeper
 /usr/bin/expect <<-EOF
 spawn ssh ${ip3} bash /opt/zookeeper003.sh
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF
 ​
 #启动server1中的zookeeper
 service zookeeper start
 ​
 #启动server2中的zookeeper
 /usr/bin/expect <<-EOF
 spawn ssh ${ip2} service zookeeper start
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF
 ​
 #启动server3中的zookeeper
 /usr/bin/expect <<-EOF
 spawn ssh ${ip3} service zookeeper start
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF

(4)执行第二个脚本进行安装

bash /yujish/zk.sh

3.消息队列

(1)场景

主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。

我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。

当前比较常见的 MQ 中间件有:ActiveMQ、RabbitMQ、RocketMQ、Kafka 等。
(2)好处

①解耦

允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

②可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

③缓冲

有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

④灵活性 & 峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

⑤ 异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
e46cf90a9e1847ebbfc2b67eea7bad89.png

 (3)两种模式
①点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
 

cd1d3ae327c0474a8d7eb5a770523d46.png

94ad0032fb22457cb31f24767581a7e8.png

② 发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)

消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。
发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。
9f3063258c7b4b078d4c41838875df9d.png7e427b79bba94545a5caf52558024304.png

 4.Kafka

(1)概念

官方下载地址:http://kafka.apache.org/downloads.html

(2) 定义

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。

(3)简介

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写, Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。
 

(4)特性

①高吞吐量、低延迟

Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

②可扩展性

kafka 集群支持热扩展。

③持久性、可靠性

消息被持久化到本地磁盘,并且支持数据备份防止数据丢失。

④容错性

允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)。

⑤高并发

支持数千个客户端同时读写。
 

(5)系统架构

6476ce5264df9eb2e97b0c616505a14f.png

① Broker

一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。

②Topic

可以理解为一个队列,生产者和消费者面向的都是一个 topic。
类似于数据库的表名或者 ES 的 index。
物理上不同 topic 的消息分开存储。

③Partition

为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。
每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。
Partation 数据路由规则:

指定了 patition,则直接使用;
未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
patition 和 key 都未指定,使用轮询选出一个 patition。
注意:

每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。
每个 partition 中的数据使用多个 segment 文件存储。
如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。
broker、topic、partition三者的关系:

broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。
分区的原因:

方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
可以提高并发,因为可以以Partition为单位读写了。
④Replica

副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。

⑤Leader

每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。

⑥Follower

Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower。
⑦Producer

生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。
⑧Consumer

消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据。

⑨Consumer Group(CG)

消费者组,由多个 consumer 组成。
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。
将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
消费者组之间互不影响。
⑩ offset 偏移量

可以唯一的标识一条消息。
偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)。
⑪ Zookeeper

Kafka 通过 Zookeeper 来存储集群的 meta 信息。
由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。
也就是说,zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费。
 

5.部署 kafka 集群

7e14c08df8a0458290e74d41336d265c.png

(1)实验环境

3 台服务器已搭建好Zookeeper 集群:

192.168.204.61

192.168.204.62

192.168.204.63

(2)kafka安装(第一种方式:命令行)

1.下载安装包
官方下载地址:http://kafka.apache.org/downloads.html

cd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz


2.安装 Kafka
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka

//修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}

vim server.properties
broker.id=0    ●21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
listeners=PLAINTEXT://192.168.204.61:9092    ●31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3    #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8         #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1    #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168    #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824    #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181    ●123行,配置连接Zookeeper集群地址

//修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin


source /etc/profile

//配置 Zookeeper 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)
	echo "---------- Kafka 启动 ------------"
	${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)
	echo "---------- Kafka 停止 ------------"
	${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)
	$0 stop
	$0 start
;;
status)
	echo "---------- Kafka 状态 ------------"
	count=$(ps -ef | grep kafka | egrep -cv "grep|$$")
	if [ "$count" -eq 0 ];then
        echo "kafka is not running"
    else
        echo "kafka is running"
    fi
;;
*)
    echo "Usage: $0 {start|stop|restart|status}"
esac

//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka

//分别启动 Kafka
service kafka start

(3)kafka安装(第二种方式:脚本)

① 写一个kafka的安装脚本

在server1上写一个kafka的安装脚本。

vim /opt/kafka001.sh

#!/bin/bash
 #部署kafka集群,server1的安装脚本
 ​
 ## 1.下载安装包 ##
 #官方下载地址:http://kafka.apache.org/downloads.html
 cd /opt
 wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz
 ​
 #如果服务器无法连接外网,需要提前下载好安装包,放在/opt/目录下。
 ## 2.安装 Kafka ##
 cd /opt/
 tar zxvf kafka_2.13-2.7.1.tgz
 mv kafka_2.13-2.7.1 /usr/local/kafka
 ​
 ## 3.修改配置文件 ##
 cd /usr/local/kafka/config/
 cp server.properties{,.bak}
 ​
 #21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2 
 sed -i '/broker.id/c broker.id=0' /usr/local/kafka/config/server.properties
 ​
 #31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改。
 #sed -i '/listeners/c listeners=PLAINTEXT://192.168.204.61:9092' /usr/local/kafka/config/server.properties
 ​
 #60行,kafka运行日志存放的路径,也是数据存放的路径
 sed -i '/log.dirs/c log.dirs=/usr/local/kafka/logs' /usr/local/kafka/config/server.properties
 ​
 #123行,配置连接Zookeeper集群地址
 sed -i '/zookeeper.connect/c zookeeper.connect=192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181' /usr/local/kafka/config/server.properties
 ​
 ​
 ## 4.修改环境变量 ##
 export KAFKA_HOME=/usr/local/kafka
 export PATH=$PATH:$KAFKA_HOME/bin
 ​
 echo "export KAFKA_HOME=/usr/local/kafka
 export PATH=$PATH:$KAFKA_HOME/bin" >>/etc/profile
 ​
 ​
 ## 5.配置 kafka 启动脚本,将kafka添加进系统服务管理 ##
 cat << EOF > /etc/init.d/kafka
 #!/bin/bash
 #chkconfig:2345 22 88
 #description:Kafka Service Control Script
 KAFKA_HOME='/usr/local/kafka'
 case $1 in
 start)
     echo "---------- Kafka 启动 ------------"
     ${KAFKA_HOME}/bin/kafka-server-start.sh -daemon             ${KAFKA_HOME}/config/server.properties
     ;;
 stop)
     echo "---------- Kafka 停止 ------------"
     ${KAFKA_HOME}/bin/kafka-server-stop.sh
     ;;
 restart)
     $0 stop
     $0 start
     ;;
 status)
     echo "---------- Kafka 状态 ------------"
     count=$(ps -ef | grep kafka | egrep -cv "grep|$$")
     if [ "$count" -eq 0 ];then
         echo "kafka is not running"
     else
         echo "kafka is running"
     fi
     ;;
 *)
     echo "Usage: $0 {start|stop|restart|status}"
 esac
 EOF
 ​
 #设置开机自启
 chmod +x /etc/init.d/kafka
 chkconfig --add kafka
 ​
 #分别启动 Kafka
 service kafka start

kafka配置文件server.properties注释:

broker.id=0    #21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
 listeners=PLAINTEXT://192.168.204.61:9092    #31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
 num.network.threads=3    #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
 num.io.threads=8         #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
 socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
 socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
 socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
 log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
 num.partitions=1      #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
 num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量
 log.retention.hours=168    #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
 log.segment.bytes=1073741824    #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
 zookeeper.connect=192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181    #123行,配置连接Zookeeper集群地址

写第二个脚本(用于传输和执行安装脚本)

在server1写第二个脚本,用于将kafka的安装脚本传给给server2和server3,并执行脚本和启动服务。

vim /opt/kf.sh

#!/bin/bash
 #descripe:该脚本用于传输和执行zookeeper的安装脚本。即在server1上,将安装脚本传给server2、server3,并修改myid。之后依次执行。
 ​
 ####1.设变量####
 #root密码
 pass=1234
 #三台服务器的ip
 ip1=192.168.204.61
 ip2=192.168.204.62
 ip3=192.168.204.63
 ​
 #安装expect工具
 yum install -y expect
 ​
 ###2.修改脚本,并将脚本传给server2####
 ​
 #复制脚本并命名为002,并修改参数。用于传给server2执行。
 cp /yujish/kafka001.sh  /yujish/kafka002.sh
 #配置文件21行,broker的全局唯一编号,每个broker不能重复,将server2的修改为broker.id=1
 sed -i '/broker.id=0/ s/broker.id=0/broker.id=1/' /yujish/kafka002.sh
 ​
 #配置文件31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
 #sed -i '/PLAINTEXT://192.168.204.61:9092/c listeners=PLAINTEXT://192.168.204.62:9092' /opt/kafka002.sh
 ​
 ​
 #将002脚本传给server2
 /usr/bin/expect <<-EOF
 spawn scp /opt/kafka001.sh ${ip2}:/opt/
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF
 ​
 ####3.修改脚本并将脚本传给server3####
 ​
 #复制脚本并命名为003,并修改参数。用于传给server2执行。
 cp /opt/kafka001.sh  /opt/kafka003.sh
 #配置文件21行,broker的全局唯一编号,每个broker不能重复,将server3的修改为broker.id=2
 sed -i '/broker.id=0/ s/broker.id=0/broker.id=2/' /opt/kafka003.sh
 ​
 #配置文件31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
 #sed -i '/PLAINTEXT://192.168.204.61:9092/c listeners=PLAINTEXT://192.168.204.63:9092' /yujish/kafka003.sh
 ​
 #将003脚本传给server3
 /usr/bin/expect <<-EOF
 spawn scp /opt/kafka003.sh ${ip3}:/opt/
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF
 ​
 ####4.执行三台服务器中的脚本####
 ​
 #执行server1中的脚本,安装kafka
 bash /yujish/kafka001.sh
 ​
 #执行server2中的脚本,安装kafka
 /usr/bin/expect <<-EOF
 spawn ssh ${ip2} bash /opt/kafka002.sh
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF
 ​
 #执行server3中的脚本,安装kafka
 /usr/bin/expect <<-EOF
 spawn ssh ${ip3} bash /opt/kafka003.sh
 expect {
          "(yes/no)" {send "yes\n"; exp_continue}
          "password" {send "$pass\n"}
 }
 EOF

③  执行第二个脚本进行安装

 bash /opt/kf.sh

(4)kafka的操作行命令

创建topic

 kafka-topics.sh --create --zookeeper 192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181 --replication-factor 2 --partitions 3 --topic test
 ​
 ##注释:
 --zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
 --replication-factor:定义分区副本数,1 代表单副本,建议为 2 
 --partitions:定义分区数 
 --topic:定义 topic 名称

查看当前服务器中的所有 topic

 kafka-topics.sh --list --zookeeper 192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181

查看某个 topic 的详情

kafka-topics.sh  --describe --zookeeper 192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181

发布消息

 kafka-console-producer.sh --broker-list 192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181  --topic test

消费消息

kafka-console-consumer.sh --bootstrap-server 192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181 --topic test --from-beginning
 ​
 ##注释:
 --from-beginning:会把主题中以往所有的数据都读取出来

修改分区数量(分区数量只能增加,不能减少)

kafka-topics.sh --zookeeper 192.168.121.10:2181,192.168.121.20:2181,192.168.121.30:2181 --alter --topic test --partitions 6

⑦ 删除 topic

 kafka-topics.sh --delete --zookeeper 192.168.204.61:2181,192.168.204.62:2181,192.168.204.63:2181 --topic test

6.Filebeat+Kafka+ELK

(1)部署 Zookeeper+Kafka 集群

已部署完成。

(2)部署 Filebeat

 cd /usr/local/filebeat
 ​
 vim filebeat.yml
 filebeat.prospectors:
 - type: log
   enabled: true
   paths:
     - /var/log/messages
     - /var/log/*.log
#以下需要注释
#  fields:           
#    service_name: filebeat
#    log_type: log
#    service_id: 192.168.204.53

 ......
 #添加输出到 Kafka 的配置
#以下注释
#  output.logstash:
#  hosts: ["192.168.204.53:5044"]

 output.kafka:
   enabled: true
   hosts: ["192.168.204.61:9092","192.168.204.62:9092","192.168.204.62:9092"]   #指定 Kafka 集群配置
   topic: "filebeat_test"    #指定 Kafka 的 topic
   
 #启动 filebeat
 ./filebeat -e -c filebeat.yml

(3)部署 ELK

在 Logstash 组件所在节点上新建一个 Logstash 配置文件。

 cd /etc/logstash/conf.d/
 ​
 vim kafka.conf
input {
  kafka {
         bootstrap_servers => "192.168.204.61:9092,192.204.62.173:9092,192.168.204.63:9092"
          topics  => "filebeat_test"
          group_id => "test123"
          type => "httpd_kafka"
          codec => "json"
          auto_offset_reset => "earliest"
          decorate_events => true
  
      }
  }
  
  
  output {
       elasticsearch {
           hosts => ["192.168.204.51:9200","192.168.204.52:9200"]
           index => "filebeat_test-%{+YYYY.MM.dd}"
       }
       stdout {
           codec => rubydebug
       }
   }

 ​
 #启动 logstash
 logstash -f kafka.conf

(4)浏览器访问测试
浏览器访问 http://192.168.204.51:5601 登录 Kibana,单击“Create Index Pattern”按钮添加索引“filebeat_test-*”,单击 “create” 按钮创建,单击 “Discover” 按钮可查看图表信息及日志信息。

二、实验

1.Zookeeper 集群部署

(1)实验环境

准备 3 台服务器做 Zookeeper 集群:

192.168.204.61

192.168.204.62

192.168.204.63

(2) 关闭防火墙

7206527b778042e9b793d6c72e13ec08.png

 (3)下载安装

直接使用在线源

57086098a3bd445aac65b2a50e9c9c54.png

 解压

9a035915a7024570ba038161843ffa65.png

 (4)配置文件

e2bfd2e68048451eb7359e09d1ac5d1b.png

496c31d33f1d4d69bd44f15434b4af6e.png

(5) 在每个节点上创建数据目录和日志记录

95695dc42bf74fd889941d40cebed2cd.png

 (6)在每个节点的dataDir指定的目录下创建一个myid的文件,查看

30b26a17a7f34be7aa0c7371f39b7838.png

 (7)配置Zookeeper 启动脚本0c2b99b86bf340edb9c67489ea8c969b.png

923d5128919d4e2da85cb600b4198a6d.png

 (8)设置开机自启

919535db07e94a5e8e4cce1f804b7cfc.png

(9)启动

d4edcecd2d3741bb8c2f22b7216dda12.png

 (10)查看状态

071c8504c5f24368ba5fba98a1b91577.png

2.kafka集群部署

(1)解压

5c93b1945428423294e7f1648f16e193.png

(2)配置

67b8a027656443e8ad081a0ff6522681.png

40c459be522c49f994de3f6eae2145e6.png 0df3b4a323554fecabda383edf5483c2.png

 9e15b7e21f5c4c5d957d87542627a0ad.png

 6dd97af950b346b58c90fd204a344dbd.png

133b2179050346c4bcc4bf1ad94d4e70.png

 (3)修改环境变量

 8ca9c44d9b7640faa2a72aa99c5a521b.pnge343937740554cad9b7fa8527dee1cb2.png

 (4)配置 Zookeeper 启动脚本

a0f7750f34cf4c429904cf9035e3e6e3.png4bb2e6540d6544be84cd671ffeb055e7.png

 开机启动

c5f79c9720ea477887cfc942a9360eee.png

 分别启动

f773969f6908408bbaa078d7a83c1db5.png

 (5)Kafka 命令行操作

创建

057cc2ab63ea494785deeb16f212c1d3.png

查看所有topic

8651793740164bbda745d61496a2eb3c.png

 查看详情

385db0d6c86f4c10b1041a674f2cc70c.png

3.Filebeat+Kafka+ELK

(1)已部署 Zookeeper+Kafka 集群

(2)部署 Filebeat 

cc31e4d20c7d49988b6ab583eafda9fa.png

d2b4e926670d46018ec649678af8432e.png

 f4b6d56f64cf48f789cc1836d6a9cc35.png

(3)部署 ELK,在 Logstash 组件所在节点上新建一个 Logstash 配置文件

c4eab2232877448594b842dba9d66c1e.png

1ae03d31a547479799f8a8785c1f50c2.png

启动

31e9bf996aba49eb9375d2d86b334558.png

 (4)浏览器访问 http://192.168.204.51:5601 登录 Kibana,单击“Create Index Pattern”按钮添加索引“filebeat_test-*”,单击 “create” 按钮创建,单击 “Discover” 按钮可查看图表信息及日志信息。

 cd440e1a7dcf4f3687c5ffef6343045f.png

 e490befb51ce4fa18f89f0d70746b53b.png

 ba6b5a794bca4c30862b13d24d8018fa.png

 5704046488c248c2bbb3c4f0550366b5.png

三、问题

1.解压文件异常

(1)报错

9b6b5a0d7d544025baddff05772859b3.png

 (2)原因分析

第一次下载的压缩包不完整,解压后的文件夹保留,导致后续重新下载的重名文件名带0或(1)(2)...,系统解压依旧用第一个。只需删去不完整的即可。

28ac33a6041c4310a105ce9e7a2de618.png

(3)解决方法

删除

6eefc119df1c4464a6108cd27d9ffc9a.png

2.kafka集群建立失败

(1)报错

848fa9fbdb3a400eb78e73256b916cd6.png

 (2)原因分析

本地客户端连接服务器端的过程中超时了

(3)解决方法

systemctl disable firewalld

3.启动 filebeat报错

(1)报错

9d86da8e023f42b2951f14f09e323e35.png

(2)配置文件错误

修改配置文件

cd /usr/local/filebeat

vim filebeat.yml

(3)解决方法

注释

cf261378587f4c3c9e22d6b548fca0a6.png

 输出名修改为ouput.kafka

194aded6f36a4715863aa645baeb1008.png

启动

nohup ./filebeat -e -c filebeat.yml > filebeat.out &

4aa834e25ee94a89a2d15c1b6a32a545.png

4.VIM报错

(1)原因分析

在用vim命令打开一个文件时,其会默认产生一个cmd.swap文件,用于保存数据,当文件非正常关闭时,可用此文件来恢复,当正常关闭时,此文件会被删除,非正常关闭时,不会被删除,所以提示存在.swap文件。

(2)解决方法

1)用命令恢复非正常文件,vim -r 非正常文件,然后再删除.swap文件,再次编辑文件时,不会再提示警告。

2)用ls -al命令查询出.swap隐藏文件,并删除,下载再编辑文件时,不会再提示警告。

8def9c6e01c34e908562df971609c4cc.png

 删除

cc6e80cf63164e1aaa595d379066355d.png

5. kibana无法匹配关键字

(1)报错

kibana所搜索不到filebeat_test-*

fd42078ded644dbeae72e661e8095014.png(2)原因分析

访问http://192.168.204.51:9100/名称错误

6914acd481184556b1df4bb94b5b47d3.png

 (3)解决方法

配置文件output 模块修改

成功

 

四、总结

EFLFK架构:ELK + Filebeat + Kafka。

部署 kafka 需要先部署 zookeeper。(kafka从3.0版本之后,不再依赖zookeeper)

zookeeper

zookeeper : 分布式的系统管理框架, 作用: 文件系统 + 通知机制

本质: 存储和管理 分布式应用的元数据,如果应用服务状态发生变化则会通知客户端。

消息队列 MQ

web应用中间件 : nginx tomcat apache haproxy squid varnish

MQ消息队列中间件 : redis kafka rabbitMQ rocketMQ activeMQ

kafka 架构

broker: kafka服务器,一个kafka由多个broker组成。

topic: 一个消息队列,生产者和消费者面向的都是topic。

producer: 生产者push 推送消息数据到broker 的topic中。

consumer: 消费者pull 从broker的topic中拉取消息数据。

partition: 分区,一个topic可以被分成一个或者多个

partition分区,用来加快消息的传输(读写)。

partition中的消息数据是有序的,partition之间是无序。在秒杀、红包等要求有序场景中,只能使用一个partition。
副本: 对partition进行备份,leader负责读写,follow负责备份。

offset: 偏移量,记录消费者消费消息的位置,记录消费者上一次消费的数据到哪里了,这样就可以接着下-a条数据继续进行消费。

zookeeper: 保存kafka集群的元信息,保存offset。 结合kafka,生产者推送数据到kafka集群时需要通过zk去寻找kafka的位置,消费者消费哪条数据也需要zk的支持,因为可以从zk中获得offset。

命令

#zookeeper
//分别启动 Zookeeper
service zookeeper start

//查看当前状态
service zookeeper status


#kafka
//创建topic
kafka-topics.sh --create --zookeeper 192.168.205.61:2181,192.168.204.62:2181,192.168.204.63:2181 --replication-factor 2 --partitions 3 --topic test

//查看当前服务器中的所有 topic
kafka-topics.sh --list --zookeeper 192.168.205.61:2181,192.168.204.62:2181,192.168.204.63:2181

//查看某个 topic 的详情
kafka-topics.sh  --describe --zookeeper 192.168.205.61:2181,192.168.204.62:2181,192.168.204.63:2181

//发布消息
kafka-console-producer.sh --broker-list 192.168.204.61:9092,192.168.204.62:9092,192.168.204.63:9092  --topic test

//消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.204.61:9092,192.168.204.62:9092,192.168.204.63:9092 --topic test --from-beginning

-------------------------------------------------------------------------------------
--from-beginning:会把主题中以往所有的数据都读取出来
-------------------------------------------------------------------------------------

//修改分区数
kafka-topics.sh --zookeeper 192.168.205.61:2181,192.168.204.62:2181,192.168.204.63:2181 --alter --topic test --partitions 6

//删除 topic
kafka-topics.sh --delete --zookeeper 192.168.205.61:2181,192.168.204.62:2181,192.168.204.63:2181 --topic test

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/60390.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于DiscordMidjourney API接口实现文生图

https://discord.com/api/v9/interactions 请求头&#xff1a; authorization:取自 浏览器中discord 文生图请求头中的 authorization 的值 Content-Type:application/json 请求体&#xff1a; {“type”:2,“application_id”:“93692956130267xxxx”,“guild_id”:“1135900…

python-MySQL数据库建表语句(需要连接数据库)转存为Excel文档-工作小记

将create table XXXXXX 转为指定Excel文档。该脚本适用于数据库表结构本地文档记录 呈现效果 代码 # -*- coding:utf-8 -*- # Time : 2023/8/2 15:14 # Author: 水兵没月 # File : MySQL建表_2_excel.py import reimport mysql.connector import pandas as pd db 库名 mydb …

TS协议之PMT(节目映射表)

TS协议之PAT&#xff08;节目关联表&#xff09; 1.概要 PMT&#xff1a;节目映射表&#xff0c;与PAT成对出现&#xff0c;包含了该节目下所有的节目元素。 PMT数据结构如下&#xff1a; 字段分析&#xff1a; 字段字段描述表id标识一个TS PSI分段的内容是节目关联分段&am…

性能分析记录

4实例压测TPS浮动在200-300 1.TPS浮动200-300&#xff0c;ART浮动的可能性是10-20ms&#xff0c;链路复杂是可接受的&#xff0c;链路简单则需要分析原因。 1&#xff09;缓存没命中&#xff0c;对某些账号缓存没命中&#xff0c;或缓存失效后导致隔段时间耗时升高。 2&…

MySQL正则表达式检索数据

目录 一、使用正则表达式进行基本字符匹配 1.使用regexp关键字 2.使用正则表达式 . 二、进行OR匹配 1.为搜索两个串之一&#xff0c;使用 | 2.匹配几个字符之一[] 3.匹配范围 4.匹配特殊字符 过滤数据允许使用匹配、比较、通配符操作来寻找数据&#xff0c;但是随…

mac前端代码编辑 Sublime Text 4 Dev 中文v4.0(4151)

Sublime Text 4 for Mac是一款功能强大的代码编辑器&#xff0c;适合所有需要高效编写代码和进行代码管理的程序员使用。 快速响应&#xff1a;Sublime Text 4在加载文件和执行命令时非常快速&#xff0c;能够让用户在高效的开发过程中体验到无缝的交互。 多种语言支持&#…

第一章-JavaScript基础进阶part3:BOM

文章目录 一、BOM概述1.1 什么是BOM 二、window对象的常见事件2.1 页面加载事件2.2 调整窗口大小事件onresize 三、定时器3.1 案例 四、JS执行机制4.1 this指向4.2 JS执行机制1、JS是单线程2、JS的同步和异步3、JS的执行机制 五、location对象5.1 locationc对象常用属性5.2 loc…

Win11大小写切换图标关闭方法

大家使用Win11操作系统的时候经常会切换大小写键盘&#xff0c;有些游戏本在游戏过程中需要切换大小写&#xff0c;这个时候电脑的屏幕就会出现大小写切换的图标而影响游戏体验&#xff1b; 那么想要关闭Win11电脑上大小写切换图标&#xff0c;又不知道具体怎么操作&#xff0c…

java学习路程之篇四、进阶知识、石头迷阵游戏、绘制界面、打乱石头方块、移动业务、游戏判定胜利、统计步数、重新游戏

文章目录 1、绘制界面2、打乱石头方块3、移动业务4、游戏判定胜利5、统计步数6、重新游戏7、完整代码 1、绘制界面 2、打乱石头方块 3、移动业务 4、游戏判定胜利 5、统计步数 6、重新游戏 7、完整代码 java之石头迷阵单击游戏、继承、接口、窗体、事件、组件、按钮、图片

一零六七、JVM梳理

JVM&#xff1f; Java虚拟机&#xff0c;可以理解为Java程序的运行环境&#xff0c;可以执行Java字节码&#xff08;Java bytecode&#xff09;并提供了内存管理、垃圾回收、线程管理等功能 java内存区域划分?每块内存中都对应什么? 方法区&#xff1a;类的结构信息、常量池、…

优化|当机器学习上运筹学:PyEPO与端对端预测后优化

分享者&#xff1a;唐博 编者按&#xff1a;​ 这篇文章我想要写已经很久了&#xff0c;毕竟“端对端预测后优化”&#xff08;End-to-End Predict-then-Optimize&#xff09;正是我读博期间的主要研究方向&#xff0c;但我又一直迟迟没能下笔。想说自己杂事缠身&#xff08;实…

高温环境下光模块光功率降低的原因与解决方案

光模块是光纤通信系统中的关键组件&#xff0c;其稳定的光功率输出对于确保通信质量至关重要。然而&#xff0c;高温环境下光模块的光功率往往会出现下降&#xff0c;本期文章我们将探讨高温环境下光模块光功率降低的原因和解决方案。 一、高温环境下光功率降低的原因 &#…

算法练习--leetcode 数组

文章目录 爬楼梯问题裴波那契数列两数之和 [数组]合并两个有序数组移动零找到所有数组中消失的数字 爬楼梯问题 输入n阶楼梯&#xff0c;每次爬1或者2个台阶&#xff0c;有多少种方法可以爬到楼顶&#xff1f; 示例1&#xff1a;输入2&#xff0c; 输出2 一次爬2阶&#xff1…

金鸣识别将无表格线的图片转为excel的几个常用方案

我们知道&#xff0c;金鸣识别要将横竖线齐全的表格图片转为excel非常简单&#xff0c;但要是表格线不齐全甚至没有表格线的图片呢&#xff1f;这就没那么容易了&#xff0c;在识别这类图片时&#xff0c;我们一般会使用以下的一种或多种方法进行处理&#xff1a; 1. 基于布局…

Devart dbForge Studio for MySQL Crack

Devart dbForge Studio for MySQL Crack dbForge Studio for MySQL是一个用于MySQL和MariaDB数据库开发、管理和管理的通用GUI工具。IDE允许您通过直观的界面创建和执行查询、开发和调试存储例程、自动化数据库对象管理、分析表数据。MySQL客户端提供了数据和模式比较和同步工具…

Android Studio 的Gradle版本修改

使用Android Studio构建项目时&#xff0c;需要配置Gradle&#xff0c;与Gradle插件。 Gradle是一个构建工具&#xff0c;用于管理和自动化Android项目的构建过程。它使用Groovy或Kotlin作为脚本语言&#xff0c;并提供了强大的配置能力来定义项目的依赖关系、编译选项、打包方…

[用go实现解释器]笔记1-词法分析

本文是《用go实现解释器》的读书笔记 ​ https://malred-blog​malred.github.io/2023/06/03/ji-suan-ji-li-lun-ji-shu-ji/shi-ti/go-compile/yong-go-yu-yan-shi-xian-jie-shi-qi/go-compiler-1/#toc-heading-6http://个人博客该笔记地址 ​github.com/malred/malanghttp:/…

selenium 截屏

当前环境&#xff1a; Windows 10 Python 3.7 selenium 3.141.0 Google Chrome 115.0.5790.110 &#xff08;64 位&#xff09; from selenium import webdriver import base64if __name__ __main__:#driver webdriver.Chrome()driver.get(https://www.baidu.com/)# 1.…

sql 参数自动替换

需求&#xff1a;看日志时&#xff0c;有的sql 非常的长&#xff0c;参数比较多&#xff0c;无法直接在sql 客户端工具执行&#xff0c;如果一个一个的把问号占位符替换为参数太麻烦&#xff0c;因此写个html 小工具&#xff0c;批量替换&#xff1a; 代码&#xff1a; <!…

python文件与目录操作

目录 文件编码 文件的读取 打开文件 mode常用的三种基础访问模式 读取文件 关闭文件 with open语法 文件的写入操作 文件综合案例 a.txt内容 代码实现 b.txt文件 目录操作 前言 os模块 具体方法 os.path模块 具体方法 文件编码 前言&#xff1a;由于计算机…