GhostNetV2 Enhance Cheap Operation with Long-Range Attention 论文学习

论文地址:https://arxiv.org/abs/2211.12905
代码地址:https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch

解决了什么问题?

在计算机视觉领域,深度神经网络在诸多任务上扮演着重要角色。为了将神经网络部署在边缘设备如手机和可穿戴设备,我们不只要考虑模型的表现,也要考虑其效率,尤其是实际的推理速度。矩阵乘法占据了算力消耗和参数量的主要部分。设计轻量级模型能显著降低推理延迟。

基于卷积的轻量级模型不擅长建模远距离的依赖关系,只能获取窗口区域内的局部信息,使性能无法进一步提升。在卷积中引入自注意力可以获得全局信息,但会制约实际的速度。常用的自注意力模块需要很高的复杂度,对低算力不友好。此外,需要对特征做大量的 split 和 reshape 操作,从而计算注意力图。尽管理论复杂度可忽略不计,但这些操作会增加内存占用和延迟。因此,在轻量级模型中使用原版的子注意力不适合移动设备。

提出了什么方法?

本文提出了一个硬件友好的注意力机制(叫 DFC 注意力),然后针对移动设备提出了一个新的 GhostNetV2 架构。DFC 注意力由全连接层组成,在常用的硬件上不只计算速度快,而且也可以获取远距离像素之间的关系。作者进一步分析了之前的 GhostNet,用带 DFC 注意力的低成本操作输出扩展特征,这样 GhostNetV2 能同时聚合局部和远距离的信息。在 ImageNet-1K 上,它取得了 75.3 % 75.3\% 75.3% 的准确率,FLOPs 为 167 M 167M 167M

为了简洁,只有全连接层参与注意力图的生成。一个全连接层被拆分成水平方向的全连接和垂直方向的全连接,聚合 2D 特征图的像素。这两个 FC 层会将各自方向上距离较远的像素都涵盖进来,把它们堆叠到一起,从而产生全局感受野。此外,作者回顾了 GhostNet 的表征瓶颈,通过 DFC 层来加强中间特征。然后作者构建了一个轻量级的视觉主干 GhostNetV2。

GhostNet 回顾

GhostNet 是针对移动设备设计的轻量级模型,能进行高效的推理。它主要的模块是 Ghost 模块,利用低成本操作生成出更多的特征图,从而替换原始的卷积。给定输入特征 X ∈ R H × W × C X\in \mathbb{R}^{H\times W\times C} XRH×W×C,Ghost 模块通过两步替换标准卷积。首先,用一个 1 × 1 1\times 1 1×1卷积来生成 intrinsic 特征,

Y ′ = X ∗ F 1 × 1 Y'=X \ast F_{1\times 1} Y=XF1×1

其中, ∗ \ast 表示卷积操作, F 1 × 1 F_{1\times 1} F1×1 表示 pointwise conv, Y ′ ∈ R H × W × C o u t ′ Y'\in\mathbb{R}^{H\times W\times C'_{out}} YRH×W×Cout 是 intrinsic 特征,该特征的尺寸要小于原始输出的特征 C o u t ′ < C o u t C'_{out}<C_{out} Cout<Cout。然后,使用低成本操作(如深度卷积)来计算 intrinsic 特征,从而生成更多的特征。然后沿着通道维度,将这两部分特征 concat 一起:

Y = Concat ( [ Y ′ , Y ′ ∗ F d p ] ) Y=\text{Concat}([Y', Y' \ast F_{dp}]) Y=Concat([Y,YFdp])

其中 F d p F_{dp} Fdp 是深度卷积滤波器, Y ∈ R H × W × C o u t Y\in\mathbb{R}^{H\times W\times C_{out}} YRH×W×Cout 是输出特征。尽管 Ghost 模块能够大幅度降低计算成本,但表征能力还是被弱化了。要想准确的识别,像素之间的关系至关重要。在 GhostNet 中,只用到了廉价的操作( 3 × 3 3\times 3 3×3 深度卷积)来获取空间信息,只占特征的一半。其余的特征是通过 1 × 1 1\times 1 1×1 pointwise 卷积产生的,没有和其他像素有任何交流。获取的空间信息不足会阻碍模型的表现进一步提升。

GhostNet block 是用两个堆叠的 Ghost module 构成的,如下图 a 所示。与 MobileNetV2 类似,它也是一个 inverted bottleneck,第一个模块是扩展层,增加输出通道数,第二个模块降低通道数来匹配短路连接的输出。

回顾移动架构的注意力机制

注意力模型最近也引入到了计算机视觉任务。ViT 使用标准的 transformer 模型,它由自注意力模块和 MLP 模块组成。Wang 等人将自注意力操作插入到了卷积网络中,获取全局信息。注意力模块的复杂度通常是关于特征尺寸的二次方程,对于高分辨率图像(目标检测和语义分割任务)就比较困难了。

主流的降低注意力复杂度的策略是将图像切分成多个窗口,在每个窗口内和跨窗口进行注意力操作。例如,Swin-Transformer 将原始特征图切分为多个非重叠窗口,在局部窗口内计算自注意力。MobileViT 将特征展开为多个非重叠的区域,计算这些区域之间的注意力。对于 CNN 的 2D 特征图,做特征切分和注意力会增加一些 tensor reshape 和转置操作,其理论复杂度可忽略,但事实上并非如此。对于高复杂度的大模型中(Swin-B 的 FLOPS 有几十亿次),在每次推理时这些操作只占一小部分。对于轻量级模型,这些部署延迟可忽略不计。

本文中,作者将 MobileViT 中的自注意力加入到了 GhostNet 中,在 Huawei P30 上用 TFLite 工具评测其延迟性。作者使用了标准的 ImageNet 输入分辨率 224 × 224 224\times 224 224×224。理论上注意力机制只增加了 20 % 20\% 20% 的 FLOPs,但是在移动设备上增加了一倍的推理时间。理论和实际复杂度之间的巨大差异说明,针对移动设备设计一个硬件友好的注意力机制是非常必要的。

方法

DFC 注意力

作者介绍了如何为移动端 CNN 设计一个注意力模块,它应该具备以下特性:

  • 长距离:要想增强表征能力,获取长距离空间信息对注意力机制来说是非常关键的,小型 CNN 为了节省成本,通常只使用了小型的卷积核( 1 × 1 1\times 1 1×1卷积)。
  • 部署高效:注意力模块应该极其高效,以免降低推理速度。我们不希望出现高 FLOPs 的操作或硬件不友好的操作。
  • 概念简洁:为了保持模型的泛化能力,该注意力应该非常简洁。

尽管自注意力能够很好地建模长距离像素关系,但部署起来并不高效。权重固定的全连接层非常简单,且部署简单,可以用全局感受野产生注意力图。计算过程如下:

给定特征 Z ∈ R H × W × C Z\in\mathbb{R}^{H\times W\times C} ZRH×W×C,可以看作为 H W HW HW 个 tokens z i ∈ R C \mathcal{z}_i \in\mathbb{R}^C ziRC,即 Z = { z 11 , z 12 , . . . , z H W } Z=\{\mathcal{z}_{11}, \mathcal{z}_{12}, ..., \mathcal{z}_{HW}\} Z={z11,z12,...,zHW}。产生注意力图的 FC 层的具体实现如下:

a h w = ∑ h ′ , w ′ F h w , h ′ w ′ ⊙ z h ′ w ′ \mathcal{a}_{hw}=\sum_{h',w'}{F_{hw, h'w'}\odot \mathcal{z}_{h'w'}} ahw=h,wFhw,hwzhw

其中 ⊙ \odot 是逐元素相乘。 F F F是全连接层的权重, A = { a 11 , a 12 , . . . , a H W } A=\{\mathcal{a}_{11}, \mathcal{a}_{12},...,\mathcal{a}_{HW}\} A={a11,a12,...,aHW} 是生成的注意力图。上式能捕捉到全局信息,通过权重 F F F 聚合所有的 tokens,这要比自注意力简单多了。但是,该计算过程的复杂度关于特征大小仍然是二次方程,即 O ( H 2 W 2 ) \mathcal{O}(H^2W^2) O(H2W2),这在高分辨率输入图像场景中难以接受。比如,GhostNet 的第四层的特征图有 3156 ( 56 × 56 ) 3156(56\times 56) 3156(56×56)个 tokens,计算注意力图就复杂度太高了。实际上,CNN 的特征图通常是 low-rank 的,并不需要将不同空间位置的所有的输入和输出 tokens 都密集地连接起来。特征图的 2D 形状自然地提供了一个方法来降低 FC 层的复杂度,将上式拆分成两个 FC 层,然后沿着水平和垂直方向聚合特征。表示如下:

a ′ h w = ∑ h ′ = 1 H F h , h ′ w H ⊙ z h ′ w , h = 1 , 2 , . . . , H , w = 1 , 2 , . . . , W \mathcal{a'}_{hw}=\sum_{h'=1}^H{F^H_{h,h'w} \odot \mathcal{z}_{h'w}}, h=1,2,...,H, w=1,2,...,W ahw=h=1HFh,hwHzhw,h=1,2,...,H,w=1,2,...,W
a h w = ∑ w ′ = 1 W F w , w ′ w W ⊙ a ′ h w ′ , h = 1 , 2 , . . . , H , w = 1 , 2 , . . . , W \mathcal{a}_{hw}=\sum_{w'=1}^W{F^W_{w,w'w} \odot \mathcal{a'}_{hw'}}, h=1,2,...,H, w=1,2,...,W ahw=w=1WFw,wwWahw,h=1,2,...,H,w=1,2,...,W

其中 F H F^H FH F W F^W FW 是权重。以原始特征 Z Z Z 作为输入,依次地输入上面式子,分别沿着高度和宽度两个方向计算得到长距离依赖关系。作者将这个操作命名为 decoupled fully connected(DFC) 注意力,如上图所示。将水平和垂直变换拆分后,注意力模块的计算复杂度降低到了 O ( H 2 W + H W 2 ) \mathcal{O}(H^2W+HW^2) O(H2W+HW2)。在全注意力中,方块中的所有区域都直接参与到了受关注区域的计算。在 DFC 注意力中,一个区域只和它水平和垂直方向的区域做直接的融合,而其它区域只参与受关注 token 的水平和垂直方向的区域的生成,它们与受关注 token 只有间接的关联。因此,方块中所有的区域都参与到了各区域的计算。

上面两个式子表示了 DFC 注意力,分别沿着水平和垂直方向聚合像素。通过共享部分的权重,它能很方便地用卷积实现,省去了推理耗时的 tensor reshape 和转置操作。为了处理不同分辨率的输入图像,滤波器大小可以解耦成特征图大小,即对输入特征图应用两个大小分别是 1 × K H 1\times K_H 1×KH K W × 1 K_W\times 1 KW×1 的深度卷积。用卷积实现时,DFC 注意力的理论复杂度就是 O ( K H H W + K W H W ) \mathcal{O}(K_HHW + K_WHW) O(KHHW+KWHW)。TFLite 和 ONNX 可以很好地支持这个策略,方便移动端部署。

GhostNet V2

本文,作者使用 DFC 注意力来提升轻量级模型的表征能力,然后提出了新的主干网络 GhostNetV2。

增强 Ghost 模块
如上所述,Ghost 模块只有一半的特征会和其它像素交互,这破坏了空间信息获取的能力。因此,作者使用 DFC 注意力来增强 Ghost 模块的输出特征 Y Y Y,获取不同的空间像素的长距离依赖关系。

将输入特征 X ∈ R H × W × C X\in \mathbb{R}^{H\times W\times C} XRH×W×C 输入两个分支,一个 Ghost 模块产生输出特征 Y Y Y,另一个输入 DFC 模块产生注意力图 A A A。在自注意力中,线性变换层用于将输入特征变换成 query 和 key 来计算注意力图。类似地,作者使用了 1 × 1 1\times 1 1×1 卷积将模块的输入 X X X 变换成 DFC 的输入 Z Z Z。最终的输出 O ∈ R H × W × C O\in \mathbb{R}^{H\times W\times C} ORH×W×C 是两个分支输出的乘积:

O = Sigmoid ( A ) ⊙ V ( X ) O = \text{Sigmoid}(A)\odot \mathcal{V}(X) O=Sigmoid(A)V(X)

其中 ⊙ \odot 是逐元素相乘, Sigmoid \text{Sigmoid} Sigmoid是缩放函数,将注意力图 A \mathcal{A} A归一化到 ( 0 , 1 ) (0,1) (0,1)之间。

该信息聚合的过程如下图所示。对于相同的输入,Ghost 模块和 DFC 注意力是两个平行的分支,从不同的角度提取信息。二者的乘积就是输出结果,包含了 Ghost 模块的特征和 DFC 注意力的信息。每个注意力值的计算都涉及了距离远的区域,输出特征就包含了这些区域的信息。

特征下采样
Ghost 模块直接和 DFC 注意力并行计算会增加一些计算量。因此,作者通过水平和垂直方向的下采样来降低特征图尺寸,这样 DFC 注意力的所有操作都可以在更小的特征上进行。宽度和高度都默认缩放为原来的一半,这降低了 DFC 注意力 75 % 75\% 75% 的 FLOPs。然后将输出特征图上采样到原来的尺寸,从而匹配上 Ghost 分支的特征尺寸。对于下采样作者使用了 average pool,对于上采样使用了双线性插值。直接使用 sigmoid 函数会增加延迟,作者因此也在下采样后的特征图上使用了 sigmoid 函数,从而降低推理时间。尽管注意力图的值可能不在 ( 0 , 1 ) (0,1) (0,1) 区间,作者发现其对模型的最终表现影响微乎其微。

GhostV2 bottleneck
GhostNet 采用了包括了两个 Ghost 模块的倒转残差 bottleneck,第一个模块产生更多通道的扩展特征,第二个降低通道数来获取输出特征。这个倒转 bottleneck 天然地拆分了模型的 expressiveness 和 capacity。前者体现在扩展特征上,后者体现在模块的输入和输出上。原始的 Ghost 模块通过廉价操作生成部分特征,但损害了 expressiveness 和 capacity。通过比较将 DFC 注意力加在扩展特征还是输出特征上的表现,作者发现增强 expressiveness 更有效。因此,作者只将扩展特征和 DFC 注意力相乘。

图4b 展示了 GhostNetV2 的 bottleneck。DFC 注意力分支与第一个 Ghost 模块平行,增强扩展特征。然后该特征输入第二个 Ghost 模块来产生输出特征。它获取了不同空间位置的像素之间远距离依赖关系,增强模型的 expressiveness。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/600674.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux —— 信号(3)

Linux —— 信号&#xff08;3&#xff09; Core dump为什么core默认是被关闭的阻塞信号信号其他相关常见概念信号递达信号未决信号阻塞两者的区别信号的结构 信号集操作函数一个简单使用例子sigpending的使用例子 我们今天接着来了解信号&#xff1a; Core dump 大家不知道有…

大模型爱好者的福音,有了它个人电脑也可以运行大模型了

GPT4ALL是一款可以运行在个人电脑上的大模型系统&#xff0c;不需要GPU即可运行&#xff0c;目前支持mac&#xff0c;linux和windows系统。 什么是GPT4ALL&#xff1f; 不论学习任何东西&#xff0c;首先要明白它是个什么东西。 Open-source large language models that run …

3W 1.5KVDC 3KVDC 隔离宽范围输入,单、双输出 DC/DC 电源模块——TP2L-3W 系列

TP2L-3W系列是一款高性能、超小型的电源模块&#xff0c;宽范围2:1,4:1输入&#xff0c;输出有稳压和连续短路保护功能&#xff0c;隔离电压为1.5KVDC、3KVDC工作温度范围为–40℃到85℃。特别适合对输出电压的精度有严格要求的地方&#xff0c;外部遥控功能对您的设计又多一项…

【极速前进】20240423-20240428:Phi-3、fDPO、TextSquare多模态合成数据、遵循准则而不是偏好标签、混合LoRA专家

一、Phi-3技术报告 论文地址&#xff1a;https://arxiv.org/pdf/2404.14219 ​ 发布了phi-3-mini&#xff0c;一个在3.3T token上训练的3.8B模型。在学术基准和内部测试中的效果都优于Mixtral 8*7B和GPT-3.5。此外&#xff0c;还发布了7B和14B模型phi-3-small和phi-3-medium。…

Transformer详解:从放弃到入门(三)

上篇文章中我们了解了多头注意力和位置编码&#xff0c;本文我们继续了解Transformer中剩下的其他组件。 层归一化 层归一化想要解决一个问题&#xff0c;这个问题在Batch Normalization的论文中有详细的描述&#xff0c;即深层网络中内部结点在训练过程中分布的变化问题。  …

风吸式杀虫灯解析

TH-FD2S风吸式杀虫灯是一种创新且环保的害虫控制设备&#xff0c;它结合了太阳能和风力的双重优势&#xff0c;为农业生产、园林绿化以及居民生活等提供了高效且安全的害虫防治方案。 首先&#xff0c;风吸式杀虫灯的工作原理是利用害虫的趋光性&#xff0c;通过特定的光源吸引…

AI视频教程下载:用ChatGPT做SEO的终极教程

ChatGPT是由OpenAI开发的一款尖端人工智能&#xff0c;它已经彻底改变了我们进行搜索引擎优化&#xff08;SEO&#xff09;的方式。其先进的语言处理能力使其成为增强网站内容、提高搜索引擎排名和显著提升在线可见性的宝贵工具。 这个全面的课程旨在为你提供使用ChatGPT进行SE…

突破AI迷雾:英特尔携手星环科技打造向量数据库革新方案,直降大模型幻觉

去年爆火的大模型&#xff0c;正在从百模大战走向千行百业落地应用。不过行业数据规模有限&#xff0c;企业数据隐私安全的要求等等因素&#xff0c;都让行业大模型的准确率面临挑战。近期发布的《CSDN AI 开发者生态报告》数据显示&#xff0c;“缺乏数据/数据质量问题”在大模…

ILI9341显示驱动芯片的使用

ILI9341是一种常见的TFT LCD显示驱动芯片&#xff0c;它在众多的应用中都有广泛的使用。这种芯片的一个显著特点是它支持16位RGB565颜色&#xff0c;这意味着它可以显示多达65536种不同的颜色。这使得ILI9341能够提供鲜艳、生动的色彩效果&#xff0c;对于需要表现丰富色彩的应…

解决Python中的 `ModuleNotFoundError: No module named ‘fcmeans‘` 错误

ModuleNotFoundError: No module named fcmeans 解决Python中的 ModuleNotFoundError: No module named fcmeans 错误如何解决这个错误fcmeans 库简介应用实例 解决Python中的 ModuleNotFoundError: No module named fcmeans 错误 在进行数据科学或机器学习项目时&#xff0c;…

【QA】Java常见运算符

前言 本文主要讲述Java常见的运算符 运算符的概念 两个基本概念&#xff1a; 运算符&#xff1a;对字面量或者变量进行操作的符号 表达式&#xff1a;用运算符把字面量或者变量连接起来符合java语法的式子就可以称为表达式 示例&#xff1a; int a 10; int b 20; int …

上证50etf期权到底该怎么玩?

今天期权懂带你了解上证50etf期权到底该怎么玩&#xff1f;ETF期权是一种股票市场上的金融衍生品&#xff0c;它是在交易所上市交易的期权合约&#xff0c;其标的资产是某个特定的交易所交易基金&#xff08;ETF&#xff09;&#xff0c;如上证50指数ETF或沪深300指数ETF等。 上…

2023黑马头条.微服务项目.跟学笔记(五)

2023黑马头条.微服务项目.跟学笔记 五 延迟任务精准发布文章 1.文章定时发布2.延迟任务概述 2.1 什么是延迟任务2.2 技术对比 2.2.1 DelayQueue2.2.2 RabbitMQ实现延迟任务2.2.3 redis实现3.redis实现延迟任务4.延迟任务服务实现 4.1 搭建heima-leadnews-schedule模块4.2 数据库…

品深茶的抗癌功能是否涉及虚假宣传?

品深茶说到底&#xff0c;本质还是中国传统茶叶&#xff0c;茶叶本就是一种含有多种成分的饮品&#xff0c;包括茶多酚、生物碱、氨基酸、有机酸等。这些成分对人体有一定的益处&#xff0c;如抗氧化、抗炎、抗菌等作用。 一些研究表明&#xff0c;茶叶中的某些成分如茶多酚、…

以中国为目标的DinodasRAT Linux后门攻击场景复现

概述 在上一篇《以中国为目标的DinodasRAT Linux后门剖析及通信解密尝试》文章中&#xff0c;笔者对DinodasRAT Linux后门的功能及通信数据包进行了简单剖析&#xff0c;实现了对DinodasRAT Linux后门心跳数据包的解密尝试。 虽然目前可对DinodasRAT Linux后门的通信数据包进…

关于在Conda创建的虚拟环境中安装好OpenCV包后,在Pycharm中依然无法使用且import cv2时报错的问题

如果你也掉进这个坑里了&#xff0c;请记住opencv-python&#xff01;opencv-python&#xff01;&#xff01;opencv-python&#xff01;&#xff01;&#xff01; 不要贪图省事直接在Anaconda界面中自动勾选安装libopencv/opencv/py-opencv包&#xff0c;或者在Pycharm中的解…

FPGA学习笔记(3)——正点原子ZYNQ7000简介

1 ZYNQ-7000简介 ZYNQ 是由两个主要部分组成的&#xff1a;一个由双核 ARM Cortex-A9 为核心构成的处理系统&#xff08;PS&#xff0c;Processing System&#xff09;&#xff0c;和一个等价于一片 FPGA 的可编程逻辑&#xff08;PL&#xff0c;Programmable Logic&#xff0…

github提交不了的问题

开了VPN提交的时候提示这个报错 是需要这两个端口号一致&#xff0c;就能提交了

智慧应急三维电子沙盘系统

深圳易图讯科技有限公司&#xff08;www.3dgis.top&#xff09;自主研发的智慧应急三维电子沙盘系统依托大数据融合物联网、云计算、移动互联、5G、BIM、三维GIS等新一代信息技术&#xff0c;集成了高清卫星影像、地形数据、实景三维模型、现场环境数据、物联感知信息、人口、建…

KAN: Kolmogorov–Arnold Networks

KAN: Kolmogorov–Arnold Networks 论文链接&#xff1a;https://arxiv.org/abs/2404.19756 代码链接&#xff1a;https://github.com/KindXiaoming/pyKAN 项目链接&#xff1a;https://kindxiaoming.github.io/pyKAN/intro.html Abstract 受Kolmogorov-Arnold表示定理的启…