【机器学习系统的构建】从模型开发的过程讲清楚K-Fold 交叉验证 (Cross-Validation)的原理和应用

0、前言

最近在学习集成学习的时候了解到了k折交叉验证,其实在之前学习吴恩达老师的课程中也学过交叉验证,但是当时也不是很明白。这次借着自己的疑问以及网上搜找资料,终于把交叉验证给弄明白了。

在弄清楚前,我有这样几个疑问:

  1. ❓只划分测试集和训练集不行吗?貌似我之前训练的yolo并不需要valid验证集也可以训练呀,训练集用来得到最终的模型,测试集用来评估模型的性能,很对呀,为什么好端端多出来一个验证集❓
  2. ❓验证集就验证集,还得叫k折交叉验证?到底是如何进行的呢?验证集是否参与训练呢?如果不参与训练,那他岂不是和测试集作用差不多❓
  3. ❓什么时候用k折交叉验证划分数据集呢?(因为在Stacking集成方法的学习中,基学习器和元学习器的的数据集划分方式不一样,基学习器采用直接划分训练集和测试集进而将数据集划分为两部分,而元学习器采用k折交叉验证进行划分:在这里插入图片描述

带着这样几个疑问,我开始学习,在这之前,我先先过一遍理论,重学一遍吴恩达老师对这部分知识点的讲解。这部分是围绕机器学习系统的构建,我们知道了如何构建分类、回归、神经网络模型的一些它们的基本结构、基本工作原理,但是在这个机器学习系统(模型)的真正构建中(这个构建不只是说你得到了模型,同时你必须保证这个模型的性能是符合要求的),一次训练可以得到一个模型,但是这个模型的性能不一定是符合要求的,如何保证一次训练能得到一个较好、较为接近理想的模型,以及在得到不理想模型后,如何进行对模型的诊断和优化,这才是机器学习系统的构建!它是包含了数据的选择、数据集划分、训练模型、以及模型的诊断优化
在这里插入图片描述
关于上图几个过程需要强调的是:

  1. 从选择(数据+模型)到训练模型,是训练的过程,训练完成后,我们就已经获得了基于当前训练集集的最优模型,注意是基于当前训练集,而不是模型实际的性能。——key:如何进行正确的划分数据集,从而经过训练后,能使这个模型的实际性能尽可能好呢?
  2. 但是这个训练得到的模型是否真正符合需求呢(泛化能力),那么我们还需要评估模型(模型的诊断diagnostics),模型的评估我们采用测试集进行,获得方差和偏差,从而判断是否需要重新选择结构(模型、数据等)来进行优化。——key:如何根据方差和偏差来调整呢?

  💡对于上面两大段文字,你只要清楚:如果能在过程1中经过训练,得到模型,且这个模型的性能(泛化能力)非常好,那是不是就能减轻过程2 的工作量(无需做更多次优化),所以如何基于现有数据就得到一个性能好的模型,就十分重要,我们不能单单只靠过程2去不断优化模型从而得到最终的好模型,这样工作量极大且十分低效!(其实k折交叉验证就是在帮助过程1能尽量训练一次就得到一个很棒的模型,直观上来说就是在客观的模型评估时方差和偏差都低)

其实弄清楚了上面的过程和关键点其实也就大概明白了k折交叉验证存在的意义,如果不懂也没关系,下面会一步一步讲解清楚的。

一、模型评估

  模型的评估(evaluate the performance of the model),是指已经得到经过训练的模型(意味着,在训练上它的数据上已经表现得非常好了,但这不意味着它有很好的泛化能力),如何去评估这个模型实际的性能(泛化能力,即在其他没有见过的数据上的表现)。

  比如说在下面这个例子上,在训练集上,这个模型训练的肯定是极佳了(损失函数几乎就是0了),但是这个模型性能不一定就是最好的,来个新数据,很有可能就预测不准确。所以,我们要一个好的模型,这个好,是它在其他任意数据到来时都能表现的好。
在这里插入图片描述

  那么如何判断这个模型好不好呢?就需要用到我们模型评估的方法,直接给它上没见过的数据,看看预测的咋样呗——测试集(test set)

❗❗❗需要强调的是,必须是没见过的,即没有参与模型训练的数据,如何你从训练集里面拿数据(也就是已经参与训练这个模型的数据)来评估,这将不是客观的,不可取的,无法体现模型的实际性能!

在这里插入图片描述

  如下图,通过计算模型分别在测试集上和训练集上的损失函数,我们可以进行模型性能的诊断和评估:
在这里插入图片描述

关于如何利用这两个值进行模型评估,在方差和偏差那一节会详细讲

这里需要强调的是,模型评估只能用来评估模型的性能,从而对这个模型进行优化。它不能用来作为选择模型的指标!!这句话其实很难懂。

换句话来说,模型评估,是基于你已经确定了一个模型的基础上进行的,这个步骤(模型评估)是在模型选择这个步骤之后的,且用测试集进行评估了之后,你不能再拿测试集去改模型,这就相当于把测试集数据当成了训练数据,会导致最终再拿这个测试集去评估时无法客观准确的去判断(那我再拿一些数据来?咳咳,数据集的划分也是在这些步骤之前的,你需要遵守,如果你预先留了一些数据,那么是不是按照刚刚的说法,你是不是得留无穷无尽的数据呢?)。

那么什么是模型的选择呢?

二、模型的选择(模型开发)&验证集

下面我们来讲模型的选择(model selection),这会解释:为什么不能拿测试集的损失函数结果来进行选择模型❓以及带大家了解,❓什么是验证集,它到底有什么作用?

  • 🌸什么是模型的选择
  • 🪧答:其实是指选择模型的结构,也成为模型的开发过程,一些超参数层面上的,比如一些决策树的深度、神经网络的层数,如何选择可以得到一个更好的性能?

下图这个例子,比如我们想从已经训练好的十个多项式模型里面进行选择一个性能好的模型,OK,我直接拿测试集进行代价函数计算,选在测试集上代价函数最小的那个模型不就OK啦?在测试集上的代价函数小,就说明其泛化能力强不是吗?

在这里插入图片描述
这样想法是错误的,为什么呢?因为当你用测试集进行选择了一个代价函数最小的时候,你其实这个过程还是在训练模型的过程(广义上的,指由数据得到一个模型),也就是说你的测试集是参与了你的模型的训练,你选择了当前这些模型中在测试集上损失函数最小的那个,其实这个模型是基于训练集数据+测试集数据得到的,这时测试集也不再是测试集,它不再具有模型泛化能力的客观评估作用,它其实还是相当于训练集。因为模型的结构的那些神经网络的层数、决策树的深度,其实也相当于模型训练过程的参数,只不过是超参数,如果你根据测试集的代价函数的结果大小去选择模型(其实本质就是调整超参数),那么你还是相当于用测试集去参与了模型的训练过程(更精确来讲是模型的开发过程,包括模型的训练和模型的选择即超参数调整),这时,再用测试集去评论模型的泛化能力就不再客观了。

上面说了这么多,你只用得出的结论就是:测试集(test set)的作用是客观公正的评估一个模型的性能(泛化能力),它必须独立于模型的开发过程(模型的训练、选择、超参数调整),这样才能保证模型评估的客观公正.(🍀到这里也解释了开篇提到的第一个问题,为什么需要验证集!)

那么,模型的选择(超参数的选择)改如何办呢?——验证集(valid set)

也可以称为开发集( dev set),因为它是直接参与模型的开发中的模型选择这个过程中的。

有了验证集,我们可以进行模型的选择,根据验证集,选择了模型之后,我们才可以用测试集进行模型的评估!
在这里插入图片描述

三、训练集、验证集、测试集:作用总结

综上,我们基本就弄清楚了各个各个数据集的作用,在这里我们总结一下:

  • 训练集(train set):在一个确定的模型结构上,基于训练集的数据,用相应模型的训练方法(比如反向传播和梯度下降)进行模型的训练——模型的训练
  • 验证集(valid set/ dev set):对训练好的、不同结构的模型进行性能的评估,进行选择,选择一个性能最好的(这里的最好,是只这个模型是基于训练集、验证集表现的最好的,并不代表它的泛化能力就一定强)——模型的选择和超参数调整
  • 测试集(test set):独立于模型开发过程,在最终由前两个步骤推出来一个模型后,对这个模型的泛化能力进行客观公众的评估。——在最终选择好模型后,进行模型性能评估(当然不仅仅是看代价函数,还有准确率(Accuracy)、精确度(Precision)、和召回率(Recall)F1 分数(F1 Score)、均方误差(Mean Squared Error, MSE)、混淆矩阵(Confusion Matrix),当然这都是后话

四、k折交叉验证法

k折交叉验证,是一种特殊数据集划分,从而选择模型的方法,用这种数据集划分的方法来进行模型的开发(训练和选择)

对全部数据集划分成训练集和测试集,然后对训练集进行K折

所谓k折就是把训练集等分为k分,取其中的1份作为验证集,其余的k-1份作为训练集,这样取k次,可以训练得到k个模型(结构相同但是参数已经被训练的不同了)。
在这里插入图片描述

具体流程:

  1. 将全部训练集S分成k个不相交的子集,假设S中的训练样例个数为m,那么每一个子集有m/k个训练样例,相应的子集称作 { S 1 , S 2 , . . . , S k } \left \{ S_1,S_2,...,S_k \right \} {S1,S2,...,Sk}

  2. 每次从模型集合M中拿出来一个 M i M_i Mi,然后在训练子集中选择出k-1 { S 1 , S 2 , S j − 1 , S j + 1 . . . , S k } \left \{ S_1,S_2,S_{j-1},S_{j+1}...,S_k \right \} {S1,S2,Sj1,Sj+1...,Sk},(也就是每次只留下一个 { S j } \left \{ S_j \right \} {Sj},,使用这k-1个子集训练 M i M_i Mi​后,得到假设函数 h i j h_{ij} hij。最后使用剩下的一份 { S j } \left \{ S_j \right \} {Sj}作测试,得到经验错误: ε ^ S j ( h i j ) \hat{\varepsilon}_{S_j}(h_{ij}) ε^Sj(hij)

  3. 由于我们每次留下一个 { S j } \left \{ S_j \right \} {Sj},(j从1到k),因此会得到k个经验错误,那么对于一个模型 M i M_i Mi,它的经验错误是这k个经验错误的平均。(而对于这一个模型结构 M i M_i Mi会得到k个由其训练出来的模型)

  4. 选出平均经验错误率最小的 M i M_i Mi(⭐最终模型选择得出!),然后使用全部的S再做一次训练,得到最后的 h i h_i hi

核心内容: 通过上述1,2,3步进行模型性能的测试,取平均值作为某个模型的性能指标,关于最终模型的获得有以下两者方式:

  • 🍀方法一,将所有训练的KFold进行融合——不再进行第四步的全部重新训练,使用模型融合的方式(集成学习),即:多个模型的预测结果做了个简单的Ensemble,会更稳定一点
  • 🍀方法二,根据性能指标来挑选出最终单个的最优模型,再进行上述第4步重新进行训练,获得最终模型——用上训练集和验证集的全部数据,再基于k个子集的完整训练集进行重新训练

对k折交叉验证作用的理解

  • 模型选择&超参数调整: 对于上面步骤4步很好理解,对于模型选择上,相较于传统的固定划分验证集和训练集的方法,交叉验证能够尽可能使所有数据参与验证,减少了由于训练集和验证集的分布差异较大从而造成的误差,能够更客观公正的进行模型开发阶段模型之间的比较和选择

  • 模型的集成,使总模型更加稳定:由一个模型架构可以训练出k个模型,k个模型的预测结果做了个简单的Ensemble,会更稳定一点。

  • 充分利用数据: 传统的对数据划分的方法有可能会保留大约20%-30%的数据作为测试集,10%-20%的数据作为验证集。这意味着只有50%-70%的数据被用于训练模型。然而,在数据量较小的情况下,我们希望用尽可能多的数据来训练模型,以便模型能学习到足够的信息。k折交叉验证通过轮流将数据的每个子集作为验证集,使得每个数据点都有机会被用于验证,并且同样也被用于训练。这样,我们实际上使用了全部的数据进行训练和验证,从而充分利用了有限的数据。(所以在小数据量的情况下,可以使用k折验证方法划分数据集!)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/600551.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

rancher/elemental 构建不可变IOS(一)

一、什么是elemental Elemental 是 Rancher 的一个变种,专注于提供一个更轻量级的 Kubernetes 发行版。它旨在提供简化的部署和管理体验,同时保持 Kubernetes 的灵活性和强大功能。Elemental 通常针对较小的部署场景或资源受限的环境,例如测…

BFS Ekoparty 2022 -- Linux Kernel Exploitation Challenge

前言 昨天一个师傅给了我一道 linux kernel pwn 题目,然后我看了感觉非常有意思,题目也不算难(在看了作者的提示下),所以就花时间做了做,在这里简单记录一下。这个题是 BFS Lab 2022 年的一道招聘题&#…

JavaEE技术之MySql高级-搭建主从复制(主从同步原理、一主多从配置)

文章目录 MySQL主从同步1、MySQL主从同步原理2、一主多从配置2.1、准备主服务器2.2、准备从服务器2.3、启动主从同步2.4、实现主从同步2.5、停止和重置2.6、常见问题问题1问题2 MySQL主从同步 1、MySQL主从同步原理 基本原理: slave会从master读取binlog来进行数据…

软件架构的艺术:探索演化之路上的18大黄金原则

实际工作表明,一步到位的设计往往不切实际,而演化原则指导我们逐步优化架构,以灵活响应业务和技术的变化。这不仅降低了技术债务和重构风险,还确保了软件的稳定性和可扩展性。同时,架构的持续演进促进了团队协作&#…

SQL查询语句(二)逻辑运算关键字

上一篇文章中我们提到了条件查询除了一些简单的数学符号之外,还有一些用于条件判断的关键字,如逻辑判断 关键字AND,OR,NOT和范围查找关键字BETWEEN,IN等;下面我们来介绍一些这些关键字的用法以及他们所表达的含义。 目录 逻辑运算关键字 AND…

HarmonyOS实战开发教程-如何开发一个2048游戏

今天为大家分享的是2048小游戏,先看效果图: 这个项目对于新手友友来说可能有一点难度,但是只要坚持看完一定会有收获。因为小编想分享的并不局限于ArkTs语言,而是编程思想。 这个游戏的基本逻辑是初始化一个4乘4的数组&#xff…

【Toritoise SVN】SVN 怎么忽略文件夹下的所有文件但是不忽略文件夹本身

比如:忽略 Assets\StreamingAssets\LocalAsset文件夹下的所有文件但是不忽略LocalAsset这个文件夹 在TortoiseSVN中,你可以通过以下步骤来修改文件夹的svn:ignore属性: 打开Windows资源管理器,导航到你的工作副本中的Assets\Stre…

Python | Leetcode Python题解之第67题二进制求和

题目: 题解: class Solution:def addBinary(self, a, b) -> str:return {0:b}.format(int(a, 2) int(b, 2))

谷歌发布 HEAL 架构,4 步评估医学 AI 工具是否公平

如果把维持健康状态想象成一场赛跑,并不是所有人都能够站在统一起跑线上,有的人能够平稳的跑完全程,有的人即使跌倒也能够在第一时间获得帮助,但是有些人可能因为经济条件、居住地、教育水平、种族或其他因素而面临更多障碍。 「…

新火种AI|挑战谷歌,OpenAI要推出搜索引擎?

作者:一号 编辑:美美 在AI革新的浪潮下,谷歌搜索迎来了越来越多的“挑战者”。 最近,据多家外媒的消息,有知情人士透露,OpenAI正计划上线一款基于ChatGPT的大型产品,将提供一个新的搜索引擎&…

Ansible自动化运维工具 - playbook 剧本编写

一. inventory 主机清单 Inventory 支持对主机进行分组,每个组内可以定义多个主机,每个主机都可以定义在任何一个或多个主机组内。 1.1 inventory 中的变量含义 Inventory 变量名 含义ansible_hostansible连接节点时的IP地址ansible_port连接对方…

如何搜索空文件夹_名称为(纯或含)中/英/数/符

首先,需要用到的这个工具: 度娘网盘 提取码:qwu2 蓝奏云 提取码:2r1z 打开工具,切换到批量文件复制版块,快捷键Ctrl5 点击右侧的搜索添加 设定要搜索的范围、指定为文件夹、包括子目录,勾选…

【C语言】精品练习题

目录 题目一: 题目二: 题目三: 题目四: 题目五: 题目六: 题目七: 题目八: 题目九: 题目十: 题目十一: 题目十二: 题目十…

OFD(Open Fixed-layout Document)

OFD(Open Fixed-layout Document) ,是由工业和信息化部软件司牵头中国电子技术标准化研究院成立的版式编写组制定的版式文档国家标准,属于中国的一种自主格式,要打破政府部门和党委机关电子公文格式不统一,以方便地进行电子文档的…

购物车操作

添加购物车: 需求分析和接口设计: 接口设计: 请求方式:POST 请求路径:/user/shoppingCart/add请求参数:套餐id、菜品id、口味返回结果:code、data、msg 数据库设计: 这上面出现了…

天锐绿盾 | 办公加密系统,源代码防泄密、源代码透明加密、防止开发部门人员泄露源码

天锐绿盾作为一款专注于数据安全与防泄密的专业解决方案,它确实提供了针对源代码防泄密的功能,帮助企业保护其核心的知识产权。 PC地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 以下是天锐绿盾可能采…

sprig 项目启动时报错:MybatisDependsonDatabaseInitializationDetector

问题 使用application.yml启动项目报错: 解决方案 修改pom.xml: 修改这两处的版本

英语学习笔记4——Is this your ...?

Is this your …? 词汇 Vocabulary suit /sut/ n. 西装,正装 suit 的配套: shirt n. 衬衫tie n. 领带,领结belt n. 腰带trousers n. 裤子shoes n. 鞋子 school /skuːl/ n. 学校 所有学校 搭配:middle school 初中    hig…

Linux信号捕捉

要处理信号, 我们进程就得知道自己是否收到了信号, 收到了哪些信号, 所以进程需要再合适的时候去查一查自己的pending位图 block 位图 和 hander表, 什么时候进行检测呢? 当我们的进程从内核态返回到用户态的时候&…

3d模型实体显示有隐藏黑线?---模大狮模型网

在3D建模和设计领域,细节决定成败。然而,在处理3D模型时,可能会遇到模型实体上出现隐藏黑线的问题。这些黑线可能影响模型的视觉质量和呈现效果。因此,了解并解决这些隐藏黑线的问题至关重要。本文将探讨隐藏黑线出现的原因&#…