谷歌发布 HEAL 架构,4 步评估医学 AI 工具是否公平

如果把维持健康状态想象成一场赛跑,并不是所有人都能够站在统一起跑线上,有的人能够平稳的跑完全程,有的人即使跌倒也能够在第一时间获得帮助,但是有些人可能因为经济条件、居住地、教育水平、种族或其他因素而面临更多障碍。

「健康公平」意味着每个人都应该获得平等的健康医疗资源,才能够更加从容地完成这场赛跑,达到最佳的健康状态。 部分群体(如少数族裔、低社会经济地位人群或医疗保健获取能力有限的个体)在疾病预防、诊断和治疗方面受到不公平对待,会极大地影响其生活质量和生存机会。毫无疑问,提高对「健康公平」的关注度应该在全球范围在成为共识,从而进一步解决导致不平等的根本原因。

如今,虽然机器学习、深度学习等已经在医疗健康领域「有所建树」,甚至已经走出实验室、走向临床一线。感叹于 AI 的强大能力时,人们更应该关注,这一类新兴技术的落地应用,是否会加剧健康资源不平等现象呢?

图片

健康公平评估示意图

  • 浅蓝色条表示预先存在的健康结果

  • 深蓝色条形图说明了干预措施对预先存在的健康结果的影响

为此,Google 团队开发了 HEAL (The health equity framework) 框架,能够定量评估基于机器学习的医疗健康方案是否「公平」。 通过这种方法,研究团队试图确保新兴的健康技术能够有效地减少健康不平等,而不是无意中加剧这些不平等。

HEAL 架构:4 步评估皮肤科 AI 工具公平性

HEAL 框架包含 4 个步骤:

  1. 确定与卫生健康不公平有关的因素,并定义 AI 工具性能指标

  2. 明确并量化先前存在的健康差异 (disparities)

  3. AI 工具性能测试

  4. 衡量 AI 工具优先考虑健康公平差距的可能性

图片

HEAL 架构,以皮肤科疾病诊疗 AI 工具为例

第一步:确定皮肤科中与健康不公平有关的因素,明确评估 AI 工具性能的指标

研究人员通过查阅文献并综合考虑数据可用性,选定以下因素——年龄、性别、种族/族裔和 Fitzpatrick skin type (FST)。

FST 是根据人体皮肤对紫外线 (UV) 辐射、特别是晒伤和晒黑的反应,对皮肤进行分类的系统。范围从 FST I 到 FST VI,每种类型代表皮肤、眼睛和头发黑色素生成的不同水平,以及对紫外线的敏感度。

此外,研究人员选择 top-3 agreement 作为评估 AI 工具性能的指标,其定义是,AI 建议的前 3 项条件中至少有一项与皮肤科专家小组的参考诊断相匹配的病例比例。

第二步:确定皮肤科现存的「健康差异」

健康差异指标是用来量化、描述不同群体之间的健康状态不平等的具体量度。这些群体根据种族、经济状况、地理位置、性别、年龄、残疾状况或其他社会决定因素进行区分。

以下是一些常见的健康差异指标:

失能调整生命年 (disability-adjusted life years, DALYs) :反映由于疾病、伤残或早逝造成的健康生命损失年数。DALY 是一种综合指标,是寿命损失年数 (years of potential life lost, YLLs) 和带疾病生活的年数 (years lived with disability, YLDs) 的加总。

生命损失年数(YLLs) :由于早逝而损失的预期健康年数。

同时,研究人员还对皮肤癌进行了子分析 (sub-analysis),以理解 AI 工具的性能在高风险条件下的变化。研究使用 Global Burden of Disease (GBD) 的「非黑色素瘤皮肤癌」和「恶性皮肤黑色素瘤」类别来估计所有癌症的健康结果,以及「皮肤和皮下疾病」类别用于所有非癌症条件。

第三步:测量 AI 工具的性能

通过比较 AI 预测的排名病状与评估数据集上的参考诊断(根据年龄、性别、种族/族裔和eFST分层的亚群体)来测量 top-3 agreement 一致性。

第四步:检测 AI 工具在考虑健康差异方面的性能

量化皮肤疾病 AI 工具的 HEAL 指标,具体方法如下:

对每个亚群体 (subpopulations),需要两个输入:预先存在的健康差异的量化度量,以及 AI 工具性能。

计算给定不平等因素(例如种族/族裔)中,所有亚群体之间的健康结果和 AI 性能之间的反相关性 R,R 正值越大,对健康公平的考虑越全面。

将 AI 工具的 HEAL 指标定义为:p(R > 0),通过 9,999 个样本的 R 分布估算出 AI 优先考虑预先存在的健康差异的可能性。HEAL 指标超过 50% 则意味着有更高的可能性实现健康公平;低于 50% 则意味着实现公平性能的可能性较低。

皮肤病 AI 工具测评:某些子群体仍需提高

种族/族裔:HEAL 指标为 80.5%,表明对这些子群体中存在的健康差异有较高的优先级。

性别:HEAL 指标为 92.1%,表明性别在 AI 工具性能考虑健康差异方面有很高的优先级。

年龄:HEAL 指标为 0.0%,表明在不同年龄组中优先考虑健康差异的可能性低。对于癌症条件,HEAL 指标为 73.8%,而非癌症条件的 HEAL 指标为 0.0%。

图片

不同年龄段、是否有癌症群体的 HEAL 指标

研究人员进行了逻辑回归分析,结果表明,年龄和某些皮肤病条件(例如基底细胞癌和鳞状细胞癌)对 AI 性能有显著影响,而对于其他条件(例如囊肿)的表现则不够准确。

此外,研究人员还进行了交叉性分析,通过细分的 GBD 健康结果测量工具,进行了年龄、性别和种族/族裔交叉的扩展 HEAL 分析,整体 HEAL 指标为 17.0%。特别关注在健康结果和 AI 性能两方面排名较低的交叉点,识别了需要提高 AI 工具性能的子群体,其中包括 50 岁以上的西班牙裔女性、50 岁以上的黑人女性、50 岁以上的白人女性、20-49 岁的白人男性以及 50 岁以上的亚太裔男性。

也就是说,提高针对这些群体的 AI 工具性能对于实现健康公平至关重要。

不只是健康公平:AI 公平性的广大蓝图

显而易见,健康不平等现象在不同的种族/族裔、性别和年龄群体中显著存在,尤其是在高科技医疗技术飞速发展之下,健康资源的倾斜甚至有所加剧。在解决相关问题的过程中,AI 任重道远。但值得注意的是,由科技进步所带来的不公平现象其实广泛存在于人们生活的方方面面,如数字鸿沟导致的信息获取、在线教育和数字服务的不平等。

Google AI 负责人、「程序员大神」Jeff Dean 曾表示,Google 对于 AI 公平性非常重视,在数据、算法、传播分析、模型可解释性、文化差异性研究以及大模型隐私保护等方面做了大量工作。例如:

2019 年,谷歌云的负责任 AI 产品审查委员会、谷歌云负责任 AI 交易审查委员会,为避免加重算法不公平或偏见,暂停开发与信贷有关的人工智能产品。2021 年,先进技术审查委员会对涉及大型语言模型的研究进行审查,认为其可以谨慎地继续,但在进行全面的人工智能原则审查之前,此模型不能被正式推出。Google DeepMind 团队曾发布论文,探讨「如何将人类价值观融入 AI 系统」,将哲学思想融入 AI, 帮助其建立社会公平性。

未来,为了保证 AI 技术的公平性, 需要从多个角度进行干预与治理,如:

公平的数据收集与处理: 确保训练数据覆盖多样性,包括不同性别、年龄、种族、文化和社会经济背景的人群。同时,要避免因偏见而导致的数据选择,确保数据集的代表性和平衡性。

消除算法偏见: 在模型设计阶段,要主动识别和消除可能导致不公平结果的算法偏见。这可能涉及到对模型的输入特征进行仔细选择,或者使用特定的技术来减少或消除偏见。

公平性评估: 在模型部署前后,都应进行公平性评估。这包括使用各种公平性度量标准来评估模型对不同群体的影响,并根据评估结果进行必要的调整。

持续监控与迭代改进: AI 系统部署后,应持续监控其在实际环境中的表现,及时发现并解决可能出现的不公平问题。这可能需要定期迭代模型,以适应环境变化和新的社会规范。

随着 AI 技术的发展,相关的伦理准则和法律法规也将得到进一步的完善,让 AI 技术在更加公平的框架内发展。同时将更加注重多样性和包容性。而这就需要在数据收集、算法设计、产品开发等各个环节都考虑到不同群体的需求和特点。

长远来看,AI 改变生活的真谛应该是更好地服务于不同性别、年龄、种族、文化和社会经济背景的人群,减少因技术应用而产生的不公平现象。随着公众认知水平不断提高,是否能够让更多人参与到 AI 发展的规划中,对 AI 技术的发展提出建议,从而确保技术的发展符合社会的整体利益。

AI 技术公平性的广大蓝图需要技术、社会、法律等多个领域的共同努力,不要令先进技术成为「马太效应」的推手。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/600535.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

新火种AI|挑战谷歌,OpenAI要推出搜索引擎?

作者:一号 编辑:美美 在AI革新的浪潮下,谷歌搜索迎来了越来越多的“挑战者”。 最近,据多家外媒的消息,有知情人士透露,OpenAI正计划上线一款基于ChatGPT的大型产品,将提供一个新的搜索引擎&…

Ansible自动化运维工具 - playbook 剧本编写

一. inventory 主机清单 Inventory 支持对主机进行分组,每个组内可以定义多个主机,每个主机都可以定义在任何一个或多个主机组内。 1.1 inventory 中的变量含义 Inventory 变量名 含义ansible_hostansible连接节点时的IP地址ansible_port连接对方…

如何搜索空文件夹_名称为(纯或含)中/英/数/符

首先,需要用到的这个工具: 度娘网盘 提取码:qwu2 蓝奏云 提取码:2r1z 打开工具,切换到批量文件复制版块,快捷键Ctrl5 点击右侧的搜索添加 设定要搜索的范围、指定为文件夹、包括子目录,勾选…

【C语言】精品练习题

目录 题目一: 题目二: 题目三: 题目四: 题目五: 题目六: 题目七: 题目八: 题目九: 题目十: 题目十一: 题目十二: 题目十…

OFD(Open Fixed-layout Document)

OFD(Open Fixed-layout Document) ,是由工业和信息化部软件司牵头中国电子技术标准化研究院成立的版式编写组制定的版式文档国家标准,属于中国的一种自主格式,要打破政府部门和党委机关电子公文格式不统一,以方便地进行电子文档的…

购物车操作

添加购物车: 需求分析和接口设计: 接口设计: 请求方式:POST 请求路径:/user/shoppingCart/add请求参数:套餐id、菜品id、口味返回结果:code、data、msg 数据库设计: 这上面出现了…

天锐绿盾 | 办公加密系统,源代码防泄密、源代码透明加密、防止开发部门人员泄露源码

天锐绿盾作为一款专注于数据安全与防泄密的专业解决方案,它确实提供了针对源代码防泄密的功能,帮助企业保护其核心的知识产权。 PC地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 以下是天锐绿盾可能采…

sprig 项目启动时报错:MybatisDependsonDatabaseInitializationDetector

问题 使用application.yml启动项目报错: 解决方案 修改pom.xml: 修改这两处的版本

英语学习笔记4——Is this your ...?

Is this your …? 词汇 Vocabulary suit /sut/ n. 西装,正装 suit 的配套: shirt n. 衬衫tie n. 领带,领结belt n. 腰带trousers n. 裤子shoes n. 鞋子 school /skuːl/ n. 学校 所有学校 搭配:middle school 初中    hig…

Linux信号捕捉

要处理信号, 我们进程就得知道自己是否收到了信号, 收到了哪些信号, 所以进程需要再合适的时候去查一查自己的pending位图 block 位图 和 hander表, 什么时候进行检测呢? 当我们的进程从内核态返回到用户态的时候&…

3d模型实体显示有隐藏黑线?---模大狮模型网

在3D建模和设计领域,细节决定成败。然而,在处理3D模型时,可能会遇到模型实体上出现隐藏黑线的问题。这些黑线可能影响模型的视觉质量和呈现效果。因此,了解并解决这些隐藏黑线的问题至关重要。本文将探讨隐藏黑线出现的原因&#…

五一小长假,景区智慧公厕发挥了那些作用?

五一小长假已经过去,在旅途中相信大家非常开心,其中也不乏一些细节让你有了更好的体验,而在您享受美景、畅游风光的同时,或许并未留意到那个角落里,默默为您服务的智慧公厕。是的,它们将成为您旅途中不可或…

动态规划算法:简单多状态问题

例题一 解法(动态规划): 算法思路: 1. 状态表⽰: 对于简单的线性 dp ,我们可以⽤「经验 题⽬要求」来定义状态表⽰: i. 以某个位置为结尾,巴拉巴拉; ii. 以某个位置为起…

2024/5/7 QTday2

练习:优化登录框,输入完用户名和密码后,点击登录,判断账户是否为 Admin 密码 为123456,如果判断成功,则输出登录成功,并关闭整个登录界面,如果登录失败,则提示登录失败&a…

论文复现丨多车场带货物权重车辆路径问题:改进邻域搜索算法

引言 本系列文章是路径优化问题学习过程中一个完整的学习路线。问题从简单的单车场容量约束CVRP问题到多车场容量约束MDCVRP问题,再到多车场容量时间窗口复杂约束MDCVRPTW问题,复杂度是逐渐提升的。 如果大家想学习某一个算法,建议从最简单…

小红书餐饮推广怎么合作?纯干货

小红书作为国内领先的生活方式分享平台,其用户群体主要集中在一二线城市,年龄分布在18-35岁之间,其中女性用户占比高达80%。这部分用户具有较高的消费能力、审美追求和品质生活需求,对美食有着极高的兴趣和消费意愿,为…

流畅的python-学习笔记_设计模式+装饰器+闭包

策略模式 类继承abc.ABC即实现抽象类,方法可用abc.abstractmethod装饰,表明为抽象方法 装饰器基础 装饰器实际是语法糖,被装饰的函数实际是装饰器内部返回函数的引用 缺点:装饰器函数覆盖了被装饰函数的__name__和__doc__属性…

Nginx从入门到精通速成

文章目录 一. **Nginx** **的简介**1.1 什么是 **nginx**1.2 正向代理1.3 反向代理1.4 **负载均衡**1.5 动静分离 二. **Nginx** **的安装**三. **Nginx** **的常用的命令**四. **Nginx** **的配置文件**五. **Nginx** **配置实例**反向代理实例**1**5.1 实现效果5.2 准备工作5…

基于51单片机的自动售货机系统

一、项目概述 本文设计了一款以AT89C51单片机为核心的自动售货机系统,并且着重详细地介绍了自动售货机的整体系统设计方案、硬件选择基础、软件使用方法及技巧。 以AT89C51作为CPU处理单元连接各个功能模块;以44矩阵键盘作为输入控制模块对货物进行种类…

论文阅读:RHO-1:Not All Tokens Are What You Need 选择你需要的 Tokens 参与训练

论文链接:https://arxiv.org/abs/2404.07965 以往的语言模型预训练方法对所有训练 token 统一采用 next-token 预测损失。作者认为“并非语料库中的所有 token 对语言模型训练都同样重要”,这是对这一规范的挑战。作者的初步分析深入研究了语言模型的 t…