Redis系列之key过期策略介绍

为什么要有过期策略?

Redis是一个内存型的数据库,数据是放在内存里的,但是内存也是有大小的,所以,需要配置redis占用的最大内存,主要通过maxmemory配置

maxmomory <bytes>  # redis占用的最大内存

官网:https://redis.io/docs/manual/eviction/ 介绍

For example, to configure a memory limit of 100 megabytes, you can use the following directive inside the redis.conf file:

maxmomory 100mb

Setting maxmemory to zero results into no memory limits. This is the default behavior for 64 bit systems, while 32 bit systems use an implicit memory limit of 3GB.

翻译一下,大致意思是如果配置为0,那么模式最大内存大小就是电脑的内存,如果是32bit隐式大小就是3G。

如果我们不淘汰过期的key数据,堆积到一定程度,就会占满内存,满了,就不能再放数据,所以我们需要key过期机制,去删除过期的数据,保证redis的高可用。

什么是Redis key过期策略?

我们知道redis有一个特性,redis中的数据,我们都是可以设置过期时间的,如果时间到了,这个数据就会从Redis中移除。那么redis key的过期策略就是我们怎么将redis中的过期数据移除。

key的惰性过期策略

惰性过期,就是在redis里面,在每次访问操作key的时候,才判断这个key是否过期了,如果过期了就删除数据。redis中主要是通过db.c的expireIfNeeded方法去判断,调用到相关命令时才会去调用,平时不会去判断是否过期

查看一下源码,expireIfNeeded方法,在db.c源码,基于Redis6.0

int expireIfNeeded(redisDb *db, robj *key) {
    if (!keyIsExpired(db,key)) return 0;

    /* If we are running in the context of a slave, instead of
     * evicting the expired key from the database, we return ASAP:
     * the slave key expiration is controlled by the master that will
     * send us synthesized DEL operations for expired keys.
     *
     * Still we try to return the right information to the caller,
     * that is, 0 if we think the key should be still valid, 1 if
     * we think the key is expired at this time. */
    // 如果有配置masterhost,说明是从节点,那么不执行key删除操作
    if (server.masterhost != NULL) return 1;

    /* Delete the key */
    server.stat_expiredkeys++;
    propagateExpire(db,key,server.lazyfree_lazy_expire);
    notifyKeyspaceEvent(NOTIFY_EXPIRED,
        "expired",key,db->id);
    // 判断lazyfree_lazy_expire是否开启,开启执行异步删除,不开启执行同步删除,4.0之后新增的功能,默认是关闭
    int retval = server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :
                                               dbSyncDelete(db,key);
    if (retval) signalModifiedKey(NULL,db,key);
    return retval;
}

惰性删除策略可以节省CPU资源,因为只需要访问key的时候才去判断是否过期,所以平时是没啥CPU损耗的,但是如果没有再次访问,改过期的key就一直堆积在内存里面,不会被清除,从而占用大量内存空间,所以我们需要另外一种策略来配合使用,解决内存占用问题,就是下面说的key定时过期策略。

key的定期过期策略

Redis中也提供了定期清除过期key的策略,在redis源码里的server.c,里面有个serverCron方法,这个方法除了做Rehash以外,还会做很多其他的操作,比如

  1. 清理数据库中的过期键值对
  2. 关闭和清理连接失效的客户端
  3. 尝试进行持久化操作
  4. 更新服务器的各类统计信息(时间、内存占用、数据库占用情况等)

Redis多久去清除过期的数据,执行频率根据redis.conf里的配置hz

在这里插入图片描述

然后实现流程大概是咋样的?具体实现流程如下:

  1. serverCron方法去执行定时清理,执行频率redis.confhz参数配置,默认是10,也就是1s执行10次,100ms执行1次

  2. 执行清理的时候,去扫描所有设置了过期时间的key,不会去扫描所有的key

  3. 根据桶的维度去扫描key,直到扫到20个key(可配)且最多取400个桶。假如第一个桶是15个key,没有达到20个key,所以会继续扫描第二个桶,第二个桶20个key,由于是以桶为维度进行扫描的,第二个桶会被全部扫描,所以总共扫描了35个key

  4. 找到扫描的key里面过期的key,进行删除操作

  5. 判断扫描的过期数据跟扫描总数的比例是否超过10%,是,继续执行3、4步;否,删除完成。

执行过程,画一个流程图:

在这里插入图片描述

查看源码,验证一下,在redis源码里的server.c有一个serverCron方法,里面有个databasesCron函数

/* Handle background operations on Redis databases. */
databasesCron();

同个类里,查看databasesCron函数

void databasesCron(void) {
    /* Expire keys by random sampling. Not required for slaves
     * as master will synthesize DELs for us. */
    if (server.active_expire_enabled) {
        if (iAmMaster()) { // 是否主服务器
            activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
        } else { // 从服务器
            expireSlaveKeys();
        }
    }

    /* Defrag keys gradually. */
    activeDefragCycle();

    /* Perform hash tables rehashing if needed, but only if there are no
     * other processes saving the DB on disk. Otherwise rehashing is bad
     * as will cause a lot of copy-on-write of memory pages. */
    if (!hasActiveChildProcess()) {
        /* We use global counters so if we stop the computation at a given
         * DB we'll be able to start from the successive in the next
         * cron loop iteration. */
        static unsigned int resize_db = 0;
        static unsigned int rehash_db = 0;
        int dbs_per_call = CRON_DBS_PER_CALL;
        int j;

        /* Don't test more DBs than we have. */
        if (dbs_per_call > server.dbnum) dbs_per_call = server.dbnum;

        /* Resize */
        for (j = 0; j < dbs_per_call; j++) {
            tryResizeHashTables(resize_db % server.dbnum);
            resize_db++;
        }

        /* Rehash */
        if (server.activerehashing) {
            for (j = 0; j < dbs_per_call; j++) {
                int work_done = incrementallyRehash(rehash_db);
                if (work_done) {
                    /* If the function did some work, stop here, we'll do
                     * more at the next cron loop. */
                    break;
                } else {
                    /* If this db didn't need rehash, we'll try the next one. */
                    rehash_db++;
                    rehash_db %= server.dbnum;
                }
            }
        }
    }
}

查看activeExpireCycle方法,在expire.c

void activeExpireCycle(int type) {
    /* Adjust the running parameters according to the configured expire
     * effort. The default effort is 1, and the maximum configurable effort
     * is 10. */
    unsigned long
    effort = server.active_expire_effort-1, /* Rescale from 0 to 9. */
    config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP +
                           ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4*effort,
    config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION +
                                 ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort,
    config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC +
                                  2*effort,
    config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE-
                                    effort;

    /* This function has some global state in order to continue the work
     * incrementally across calls. */
    static unsigned int current_db = 0; /* Last DB tested. */
    static int timelimit_exit = 0;      /* Time limit hit in previous call? */
    static long long last_fast_cycle = 0; /* When last fast cycle ran. */

    int j, iteration = 0;
    int dbs_per_call = CRON_DBS_PER_CALL;
    long long start = ustime(), timelimit, elapsed;

    /* When clients are paused the dataset should be static not just from the
     * POV of clients not being able to write, but also from the POV of
     * expires and evictions of keys not being performed. */
    if (clientsArePaused()) return;

    if (type == ACTIVE_EXPIRE_CYCLE_FAST) {
        /* Don't start a fast cycle if the previous cycle did not exit
         * for time limit, unless the percentage of estimated stale keys is
         * too high. Also never repeat a fast cycle for the same period
         * as the fast cycle total duration itself. */
        if (!timelimit_exit &&
            server.stat_expired_stale_perc < config_cycle_acceptable_stale)
            return;

        if (start < last_fast_cycle + (long long)config_cycle_fast_duration*2)
            return;

        last_fast_cycle = start;
    }

    /* We usually should test CRON_DBS_PER_CALL per iteration, with
     * two exceptions:
     *
     * 1) Don't test more DBs than we have.
     * 2) If last time we hit the time limit, we want to scan all DBs
     * in this iteration, as there is work to do in some DB and we don't want
     * expired keys to use memory for too much time. */
    if (dbs_per_call > server.dbnum || timelimit_exit)
        dbs_per_call = server.dbnum;

    /* We can use at max 'config_cycle_slow_time_perc' percentage of CPU
     * time per iteration. Since this function gets called with a frequency of
     * server.hz times per second, the following is the max amount of
     * microseconds we can spend in this function. */
    timelimit = config_cycle_slow_time_perc*1000000/server.hz/100;
    timelimit_exit = 0;
    if (timelimit <= 0) timelimit = 1;

    if (type == ACTIVE_EXPIRE_CYCLE_FAST)
        timelimit = config_cycle_fast_duration; /* in microseconds. */

    /* Accumulate some global stats as we expire keys, to have some idea
     * about the number of keys that are already logically expired, but still
     * existing inside the database. */
    long total_sampled = 0;
    long total_expired = 0;

    for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {
        /* Expired and checked in a single loop. */
        unsigned long expired, sampled;

        redisDb *db = server.db+(current_db % server.dbnum);

        /* Increment the DB now so we are sure if we run out of time
         * in the current DB we'll restart from the next. This allows to
         * distribute the time evenly across DBs. */
        current_db++;

        /* Continue to expire if at the end of the cycle there are still
         * a big percentage of keys to expire, compared to the number of keys
         * we scanned. The percentage, stored in config_cycle_acceptable_stale
         * is not fixed, but depends on the Redis configured "expire effort". */
        do {
            unsigned long num, slots;
            long long now, ttl_sum;
            int ttl_samples;
            iteration++;

            /* If there is nothing to expire try next DB ASAP. */
            if ((num = dictSize(db->expires)) == 0) {
                db->avg_ttl = 0;
                break;
            }
            slots = dictSlots(db->expires);
            now = mstime();

            /* When there are less than 1% filled slots, sampling the key
             * space is expensive, so stop here waiting for better times...
             * The dictionary will be resized asap. */
            if (num && slots > DICT_HT_INITIAL_SIZE &&
                (num*100/slots < 1)) break;

            /* The main collection cycle. Sample random keys among keys
             * with an expire set, checking for expired ones. */
            expired = 0;
            sampled = 0;
            ttl_sum = 0;
            ttl_samples = 0;
			// 最多那20个
            if (num > config_keys_per_loop)
                num = config_keys_per_loop;

            /* Here we access the low level representation of the hash table
             * for speed concerns: this makes this code coupled with dict.c,
             * but it hardly changed in ten years.
             *
             * Note that certain places of the hash table may be empty,
             * so we want also a stop condition about the number of
             * buckets that we scanned. However scanning for free buckets
             * is very fast: we are in the cache line scanning a sequential
             * array of NULL pointers, so we can scan a lot more buckets
             * than keys in the same time. */
            long max_buckets = num*20;
            long checked_buckets = 0;
			// 如果拿到的key数量大于20 或者 checked_buckets大于400,跳出循环
            while (sampled < num && checked_buckets < max_buckets) {
                for (int table = 0; table < 2; table++) {
                    if (table == 1 && !dictIsRehashing(db->expires)) break;

                    unsigned long idx = db->expires_cursor;
                    idx &= db->expires->ht[table].sizemask;
                    // 根据index拿到hash桶
                    dictEntry *de = db->expires->ht[table].table[idx];
                    long long ttl;

                    /* Scan the current bucket of the current table. */
                    checked_buckets++;
                    // 循环hash桶里的key
                    while(de) {
                        /* Get the next entry now since this entry may get
                         * deleted. */
                        dictEntry *e = de;
                        de = de->next;

                        ttl = dictGetSignedIntegerVal(e)-now;
                        if (activeExpireCycleTryExpire(db,e,now)) expired++;
                        if (ttl > 0) {
                            /* We want the average TTL of keys yet
                             * not expired. */
                            ttl_sum += ttl;
                            ttl_samples++;
                        }
                        sampled++;
                    }
                }
                db->expires_cursor++;
            }
            total_expired += expired;
            total_sampled += sampled;

            /* Update the average TTL stats for this database. */
            if (ttl_samples) {
                long long avg_ttl = ttl_sum/ttl_samples;

                /* Do a simple running average with a few samples.
                 * We just use the current estimate with a weight of 2%
                 * and the previous estimate with a weight of 98%. */
                if (db->avg_ttl == 0) db->avg_ttl = avg_ttl;
                db->avg_ttl = (db->avg_ttl/50)*49 + (avg_ttl/50);
            }

            /* We can't block forever here even if there are many keys to
             * expire. So after a given amount of milliseconds return to the
             * caller waiting for the other active expire cycle. */
            if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
                elapsed = ustime()-start;
                if (elapsed > timelimit) {
                    timelimit_exit = 1;
                    server.stat_expired_time_cap_reached_count++;
                    break;
                }
            }
            /* We don't repeat the cycle for the current database if there are
             * an acceptable amount of stale keys (logically expired but yet
             * not reclaimed). */
             // 比例超过10%,expired过期的key数量,sampled总的扫描数量
        } while (sampled == 0 ||
                 (expired*100/sampled) > config_cycle_acceptable_stale);
    }

    elapsed = ustime()-start;
    server.stat_expire_cycle_time_used += elapsed;
    latencyAddSampleIfNeeded("expire-cycle",elapsed/1000);

    /* Update our estimate of keys existing but yet to be expired.
     * Running average with this sample accounting for 5%. */
    double current_perc;
    if (total_sampled) {
        current_perc = (double)total_expired/total_sampled;
    } else
        current_perc = 0;
    server.stat_expired_stale_perc = (current_perc*0.05)+
                                     (server.stat_expired_stale_perc*0.95);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/598167.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入解析C#中的async和await关键字

文章目录 一、异步编程的基本概念及其在C#中的实现二、async关键字的定义及其用法三、await关键字的定义及其用法示例代码&#xff1a;使用async和await编写一个简单的异步程序 四、async和await的优点注意事项 五、C#下async和await中常见问题汇总1. 异步方法中的await调用2. …

CST电磁仿真软件远场源的导出调用和提取结果【小白必看】

远场源的导出&调用(1) 提取Hybrid仿真所需的远场源&#xff01; Post-Processing > Tools > Result Templates Tools >Farfield and Antenna Properties > Export Farfields As Source 混合求解(Hybrid Simulation)是对安装在舰船等大型平台上的天线进行仿真…

【Leetcode 42】 接雨水-单调栈解法

基础思路&#xff1a; 维持栈单调递减&#xff0c;一旦出现元素大于栈顶元素&#xff0c;就可以计算雨水量&#xff0c;同时填坑&#xff08;弹出栈顶元素&#xff09; 需要注意&#xff1a; 单调栈通常保存的是下标&#xff0c;用于计算距离 public static int trap2(int[…

什么是OSW(光交换)?

光交换&#xff08;OSW&#xff09;是光传输网络中的一项关键技术&#xff0c;为复杂网络内光信号的动态路由和管理提供了手段。OSW的工作原理涉及对光信号路径的精确控制&#xff0c;确保光通信系统中的高效和灵活传输。本文全面介绍了OSW的不同类型、功能、工作模式和优势&am…

Linux 二十一章

&#x1f436;博主主页&#xff1a;ᰔᩚ. 一怀明月ꦿ ❤️‍&#x1f525;专栏系列&#xff1a;线性代数&#xff0c;C初学者入门训练&#xff0c;题解C&#xff0c;C的使用文章&#xff0c;「初学」C&#xff0c;linux &#x1f525;座右铭&#xff1a;“不要等到什么都没有了…

上市企业扣非净利润是什么意思,可以反映什么问题?

扣非净利润&#xff0c;全称“扣除非经常性损益后的净利润”&#xff0c;是指企业在剔除与正常经营无关的、偶然发生的损益后所得到的利润。这些非经常性损益包括但不限于政府补贴、处置长期资产、税收返还等。 扣非净利润的计算公式为&#xff1a;扣非净利润 净利润 - 非经常…

python:机器学习特征优选

作者&#xff1a;CSDN _养乐多_ 在Python中进行机器学习特征选择的方法有很多种。以下是一些常用的方法&#xff1a; 过滤法&#xff08;Filter Methods&#xff09;&#xff1a;通过统计方法或者相关性分析来评估每个特征的重要性&#xff0c;然后选择最相关的特征。常用的…

基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 遗传算法&#xff08;GA&#xff09;原理 4.2 BP神经网络原理 4.3 遗传优化BP神经网络结合应用 4.4 遗传算法简要改进 5.完整程序 1.程序功能描述 基于改进遗传优化的BP神经网络金融…

电机控制系列模块解析(17)—— 速度环

一、电机转速控制 电机控制的速度环是整个电机控制系统中的外环&#xff0c;其主要任务是根据设定的转速指令值&#xff08;目标速度&#xff09;与实际电机转速之间的偏差&#xff0c;调整电流环的参考值&#xff08;d轴电流Id或q轴电流Iq&#xff0c;涉及类似单电流环的弱磁…

OpenCampass评测实战 作业

按照如下教程文档操作即可&#xff1a;https://aicarrier.feishu.cn/wiki/NxUOwnLuvi0clykyzj7ccSHPndb

JavaScript解决精度问题-math.js-使用入门

JavaScript精度失真案例 0.1+0.2 结果是:0.300000000000000041-0.9 结果是:0.099999999999999984.10*100 结果是:409.999999999999946.10/0.1 结果是:60.99999999999999大数计算 9007199254740992+1 结果是9007199254740992 JavaScript 浮点数运算结果不对,因浮点数的存储…

物料厘不清?企业如何做好“物料管理”

物料包括原材料、半成品、成品、辅助用品以及生产过程中必然产生的边角余料、废料等。在制造企业中&#xff0c;各个部门的业务流程几乎都要用到物料&#xff1a; 销售和订单录入部门要通过物料确定客户定制产品的构形&#xff1b; 计划部门要根据物料来计划物料和能力的需求…

AI绘画ComfyUI工作流安装教程,新手入门安装部署教程

ComfyUI 是专为 Stable Diffusion 打造的图形用户界面&#xff08;GUI&#xff09;&#xff0c;采用了基于节点的操作方式。用户可以通过连接不同的模块&#xff08;即节点&#xff09;来创建复杂的图像生成流程。这些节点涵盖了多样的功能&#xff0c;包括加载检查点模型、输入…

卧龙搞怪作妖,图形化编程桌面内测探秘故事

在一间古朴的办公室内&#xff0c;卧龙与凤雏相对而坐&#xff0c;悠闲地品着茶。茶香袅袅&#xff0c;弥漫在空气中。 “凤雏贤弟啊&#xff0c;你可曾忆起往昔在那图形化编程桌面&#xff0c;咱们行产品内测之时&#xff0c;那乱象丛生之景呢&#xff1f;”卧龙微微眯眼&…

深度解析互联网医疗源码:视频问诊APP开发技术剖析

视频问诊APP作为在线医疗其中的重要一环&#xff0c;正在改变人们就医的方式。今天&#xff0c;我将为大家详解互联网医疗源码&#xff0c;探讨视频问诊APP开发技术&#xff0c;揭示其背后的原理和关键技术。 一、视频问诊APP的基本功能 视频问诊APP作为一种新型的医疗服务平台…

JAVA语言开发的(智慧校园系统源码)智慧校园的痛点、智慧校园的安全应用、智慧校园解决方案

一、智慧校园的痛点 1、信息孤岛问题&#xff1a;由于校园内各部门或系统独立开发&#xff0c;缺乏统一规划和标准&#xff0c;导致数据无法有效整合和共享&#xff0c;形成了信息孤岛。 2、技术更新与运维挑战&#xff1a;智慧校园的建设依赖于前沿的信息技术&#xff0c;如云…

Python进阶之-jinja2详解

✨前言&#xff1a; &#x1f31f;什么是jinja2&#xff1f; Jinja2 是一个强大的 Python 模版引擎&#xff0c;主要用于生成HTML或其他文本文件。这个库非常适合开发动态网站和Web应用的视图层&#xff0c;因为它支持逻辑操作如循环和条件判断&#xff0c;还可以继承和重用模…

vue快速入门(五十七) 作用域插槽

注释很详细&#xff0c;直接上代码 上一篇 新增内容 作用域插槽实现表格删除数据 源码 App.vue <template><div id"app"><!-- 向子组件传值 --><MyTable :tableData"tableData"><!-- 接收子组件的传值&#xff0c;默认是对象格…

商超物联网~配置学生健康与安全

配置学生健康与安全示实验 作者&#xff1a;知孤云出岫 作者主页&#xff1a;点击这里 组网图形 图1 配置学生健康与安全示例组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤配置文件 业务需求 某学校由于重视学生的健康与安全&#xff0c;希望能够通过技术手段…

网络安全之静态路由

以下是一个静态路由的拓扑图 Aping通B&#xff0c;C可以ping通D。 路由器转发数据需要路由表&#xff0c;但仍可以Aping通B&#xff0c;C可以ping通D&#xff0c;是因为产生了直连路由&#xff1a;产生的条件有两个&#xff0c;接口有IP&#xff0c;接口双up(物理up&#xff…