基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 遗传算法(GA)原理

4.2 BP神经网络原理

4.3 遗传优化BP神经网络结合应用

4.4 遗传算法简要改进

5.完整程序


1.程序功能描述

       基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真。对比BP神经网络,遗传优化bp神经网络以及改进遗传优化BP神经网络。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

三个算法的误差对比:

三个算法的数据预测曲线对比:

3.核心程序

..............................................................................
%构建BP网络
net        = newff(train_data,train_aim,Num_Hidden);

ERR1 = [];
ERR2 = [];
ERR3 = [];
for j = 1:5
    j
    %通过改进遗传算法优化BP参数
    net        = func_newGA2(net,Num_In,Num_Hidden,Num_Out,train_data,train_aim);
    %网络训练
    net.trainParam.showWindow = 0;
    net        = train(net,train_data,train_aim);
    outputs    = sim(net,test_data);
    d1         = test_aim*(Maxs-Mins) + Mins;
    d2         = outputs*(Maxs-Mins) + Mins;
    ERR1   = [ERR1,mean(abs(d1-d2)./d2) ];
    ERR2   = [ERR2,mean((abs(d1-d2)./d2).^2) ];
    ERR3   = [ERR3,std((abs(d1-d2)./d2).^2) ];
end


figure;
plot(d1,'b');
hold on
plot(d2,'r');
legend('真实股价','预测股价');
xlabel('时间(days)');
ylabel('收盘价格对比');


disp('平均误差:');
mean(ERR1)
disp('平方差:');
mean(ERR2)
disp('均方差:');
mean(ERR3)

 
save r2.mat d1 d2
04_004m

4.本算法原理

      基于遗传优化的BP(Backpropagation)神经网络金融序列预测是一种结合了遗传算法(Genetic Algorithm, GA)的优化能力和BP神经网络强大非线性拟合能力的混合预测模型。这种模型在处理金融时间序列数据,如股票价格、汇率、商品期货价格等,具有独特的优势,因为它能够有效应对金融市场的复杂性、非线性和不确定性。

4.1 遗传算法(GA)原理

       遗传算法是一种启发式搜索算法,灵感来源于自然界中的生物进化过程,包括选择、交叉(杂交)和变异三大基本操作。其目标是通过迭代搜索找到问题的最优解或近似最优解。

  • 编码:首先,将问题的解(在这里是BP神经网络的权重和阈值)编码为染色体(Chromosome),通常采用二进制编码或实数编码。

  • 适应度函数:定义一个评价标准(Fitness Function),衡量每个解的质量。在金融序列预测中,适应度函数通常是预测误差的倒数或负对数,即预测误差越小,适应度越高。

其中,yi​是实际观测值,y^​i​是预测值,N是样本数。

  • 选择:基于轮盘赌选择法等策略,选择适应度高的个体进入下一代,以模拟自然界中的“适者生存”。

  • 交叉:随机选择两个个体进行基因交换,以产生新的后代,促进多样性。

  • 变异:以一定概率随机改变某些基因值,增加搜索空间的探索范围。

  • 终止条件:当达到预设的遗传代数(Generation)或适应度达到预设阈值时,算法停止,输出当前最优解。

4.2 BP神经网络原理

       BP神经网络是一种多层前馈网络,包括输入层、隐藏层和输出层。它通过反向传播误差来调整网络权重,实现对输入数据的非线性拟合。

4.3 遗传优化BP神经网络结合应用

       将遗传算法引入BP神经网络的训练过程,主要用来优化网络的初始权重和阈值,以期找到更优的网络参数配置,从而提高预测精度。

  • 初始化:使用遗传算法生成一组BP神经网络的初始参数(权重和阈值)。

  • 遗传操作:对这批参数进行选择、交叉和变异操作,生成新的一代参数。

  • BP训练:将每一代遗传产生的参数配置应用到BP神经网络中,进行前向传播和反向传播学习,计算适应度。

  • 迭代优化:重复遗传操作和BP训练过程,直到满足停止条件,如适应度不再显著提高或达到预设的遗传代数。

  • 预测:利用经过遗传优化的BP神经网络对金融序列进行预测,输出预测值。

4.4 遗传算法简要改进

       进行遗传算法的关键点之一是保证种群的多样性。遗传算法的交叉和变异的判断,就是根据每个染色体个体的最大适应度值和平均适应度的差值的大小来判断,即:

       当差值较大的时候,说明染色体差异较大,当差值较小的时候,说明染色体差异较小,当差异较小的时候,就会容易出现局部收敛。为了防止这种情况出现,我们需要自适应的调整这种变异概率和交叉概率。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/598155.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电机控制系列模块解析(17)—— 速度环

一、电机转速控制 电机控制的速度环是整个电机控制系统中的外环,其主要任务是根据设定的转速指令值(目标速度)与实际电机转速之间的偏差,调整电流环的参考值(d轴电流Id或q轴电流Iq,涉及类似单电流环的弱磁…

OpenCampass评测实战 作业

按照如下教程文档操作即可:https://aicarrier.feishu.cn/wiki/NxUOwnLuvi0clykyzj7ccSHPndb

JavaScript解决精度问题-math.js-使用入门

JavaScript精度失真案例 0.1+0.2 结果是:0.300000000000000041-0.9 结果是:0.099999999999999984.10*100 结果是:409.999999999999946.10/0.1 结果是:60.99999999999999大数计算 9007199254740992+1 结果是9007199254740992 JavaScript 浮点数运算结果不对,因浮点数的存储…

物料厘不清?企业如何做好“物料管理”

物料包括原材料、半成品、成品、辅助用品以及生产过程中必然产生的边角余料、废料等。在制造企业中,各个部门的业务流程几乎都要用到物料: 销售和订单录入部门要通过物料确定客户定制产品的构形; 计划部门要根据物料来计划物料和能力的需求…

AI绘画ComfyUI工作流安装教程,新手入门安装部署教程

ComfyUI 是专为 Stable Diffusion 打造的图形用户界面(GUI),采用了基于节点的操作方式。用户可以通过连接不同的模块(即节点)来创建复杂的图像生成流程。这些节点涵盖了多样的功能,包括加载检查点模型、输入…

卧龙搞怪作妖,图形化编程桌面内测探秘故事

在一间古朴的办公室内,卧龙与凤雏相对而坐,悠闲地品着茶。茶香袅袅,弥漫在空气中。 “凤雏贤弟啊,你可曾忆起往昔在那图形化编程桌面,咱们行产品内测之时,那乱象丛生之景呢?”卧龙微微眯眼&…

深度解析互联网医疗源码:视频问诊APP开发技术剖析

视频问诊APP作为在线医疗其中的重要一环,正在改变人们就医的方式。今天,我将为大家详解互联网医疗源码,探讨视频问诊APP开发技术,揭示其背后的原理和关键技术。 一、视频问诊APP的基本功能 视频问诊APP作为一种新型的医疗服务平台…

JAVA语言开发的(智慧校园系统源码)智慧校园的痛点、智慧校园的安全应用、智慧校园解决方案

一、智慧校园的痛点 1、信息孤岛问题:由于校园内各部门或系统独立开发,缺乏统一规划和标准,导致数据无法有效整合和共享,形成了信息孤岛。 2、技术更新与运维挑战:智慧校园的建设依赖于前沿的信息技术,如云…

Python进阶之-jinja2详解

✨前言: 🌟什么是jinja2? Jinja2 是一个强大的 Python 模版引擎,主要用于生成HTML或其他文本文件。这个库非常适合开发动态网站和Web应用的视图层,因为它支持逻辑操作如循环和条件判断,还可以继承和重用模…

vue快速入门(五十七) 作用域插槽

注释很详细&#xff0c;直接上代码 上一篇 新增内容 作用域插槽实现表格删除数据 源码 App.vue <template><div id"app"><!-- 向子组件传值 --><MyTable :tableData"tableData"><!-- 接收子组件的传值&#xff0c;默认是对象格…

商超物联网~配置学生健康与安全

配置学生健康与安全示实验 作者&#xff1a;知孤云出岫 作者主页&#xff1a;点击这里 组网图形 图1 配置学生健康与安全示例组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤配置文件 业务需求 某学校由于重视学生的健康与安全&#xff0c;希望能够通过技术手段…

网络安全之静态路由

以下是一个静态路由的拓扑图 Aping通B&#xff0c;C可以ping通D。 路由器转发数据需要路由表&#xff0c;但仍可以Aping通B&#xff0c;C可以ping通D&#xff0c;是因为产生了直连路由&#xff1a;产生的条件有两个&#xff0c;接口有IP&#xff0c;接口双up(物理up&#xff…

使用应变计进行建筑物的健康监测

在建筑健康监测领域&#xff0c;应变计是一种至关重要的传感器&#xff0c;用于评估结构的安全和性能。特别是振弦式应变计&#xff0c;以其高精度和稳定性&#xff0c;成为监测建筑物健康状态的首选工具。本文将探讨振弦式应变计的工作原理、应用方法以及在建筑健康监测中的最…

STM32学习笔记--疑问篇

STM32学习笔记–疑问篇 GPIO是什么的缩写通用寄存器的缩写和全程 3.、这是什么的缩写 不同输出模式之间的差异 PB是GPIOB的缩写&#xff1f; 怎样知道端口应该设置成输入模式还是设置成输出模式

机器学习之基于Python多种混合模型的糖尿病预测

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景 糖尿病是一种慢性代谢性疾病&#xff0c;其发病率在全球范围内逐年上升&#xff0c;已成为影响人类健…

OpenHarmony usb打开报错“usb fail error code = -3, error msg = LIBUSB_ERROR_ACCESS”

一、前言&#xff1a;最近公司项目需求&#xff0c;定位要求使用国产系统&#xff0c;国产系统无非就是 统信os &#xff0c;麒麟OS, 还有这两年比较热的 OpenHarmony。于是&#xff0c;老板要求公司产品适配OpenHarmony , 跟上时代步伐。 二、在开发中使用 usb 通讯时&#x…

明星中药企业系列洞察(二)丨百年御药同仁堂,为什么被称为我国最“硬”的老字号?

从最初的同仁堂药室、同仁堂药店到现在的北京同仁堂集团&#xff0c;经历了清王朝由强盛到衰弱、几次外敌入侵、军阀混战到新民主主义革命的历史沧桑&#xff0c;其所有制形式、企业性质、管理方式也都发生了根本性的变化&#xff0c;但同仁堂经历数代而不衰&#xff0c;在海内…

智慧校园的优势

数字化校园的建造给传统校园带来了生机与生机&#xff0c;数字化校园的每项设备都给学生带来了很好的体验。如不久前的开学季&#xff0c;许多校园运用校园一卡通体系&#xff0c;处理了往日人山人海的校园迎新现象&#xff0c;取而代之的是安静、有序的重生报到场景&#xff0…

基于springboot实现可盈保险合同管理系统项目【项目源码+论文说明】

基于springboot实现可盈保险合同管理系统演示 摘要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本可盈保险合同管理系统就是在这样的大环境下诞生&#xff0c;其…

7个AI驱动的3D模型生成器

老子云AI生成3D模型https://www.laozicloud.com/aiModel 在快速发展的技术世界中&#xff0c;人工智能 (AI) 已经改变了游戏规则&#xff0c;尤其是在 3D 对象生成领域。 AI 驱动的 3D 对象生成器彻底改变了我们创建和可视化 3D 模型的方式&#xff0c;使该过程更加高效、准确…