CellMarker | 人骨骼肌组织细胞Marker大全!~(强烈建议火速收藏!)

1写在前面

分享一下最近看到的2paper关于骨骼肌组织的细胞Marker,绝对的Atlas级好东西。👍

希望做单细胞的小伙伴觉得有用哦。😏

2常用marker(一)

general_mrkrs <- c(
'MYH7', 'TNNT1', 'TNNT3', 'MYH1', 'MYH2', "CKM", "MB", # Myofibers
'PAX7', 'DLK1', # MuSCs
'PDGFRA', 'DCN', 'ANGPTL7', 'OSR2', 'NGFR', 'SLC22A3','ITGA6', # Fibroblasts
'FMOD', 'TNMD' , 'MKX', # Tenocytes
'MPZ', 'MBP', # Schwann cells
'CDH2', 'L1CAM', # SCG
'MSLN', 'ITLN1', # mesothelium
"ADIPOQ", "PLIN1", # adipocytes
'PTPRC', 'CD3D', 'IL7R', # T cells
'NKG7', 'PRF1', #NK cells
'CD79A', "TCL1A", # B cells
'MZB1', 'JCHAIN', # B plasma
"CD14", "FCGR3A",'S100A8', 'S100A12', # Mono
"CD163", "C1QA", # Macrop
"XCR1", "CLEC9A", # cDC1 "CADM1",
"CD1C", "CLEC10A", "CCR7", # cDC2
'LILRA4', 'IL3RA', "IRF7", # pDC
'FCGR3B', 'CSF3R', 'SORL1', # Neutrophils
'EPX', 'PRG2', # Eosinophils 'CLC'
'TPSB2', 'MS4A2', # Mast cells
'PECAM1', 'HEY1','CLU', # art EC
'CA4', 'LPL', # capEC
'ACKR1', 'SELE', # venEC
'LYVE1', 'TFF3', # lymphEC
'RGS5','ABCC9', # pericytes
'MYH11', 'ACTA2', # SMC
'HBA1', #RBC
)

出自下面paper:👇

Human skeletal muscle aging atlas. Veronika R. Kedlian, Yaning Wang, Tianliang Liu, Xiaoping Chen, Liam Bolt, Catherine Tudor, Zhuojian Shen, Eirini S. Fasouli, Elena Prigmore, Vitalii Kleshchevnikov, Jan Patrick Pett, Tong Li, John E G Lawrence, Shani Perera, Martin Prete, Ni Huang, Qin Guo, Xinrui Zeng, Lu Yang, Krzysztof Polański, Nana-Jane Chipampe, Monika Dabrowska, Xiaobo Li, Omer Ali Bayraktar, Minal Patel, Natsuhiko Kumasaka, Krishnaa T. Mahbubani, Andy Peng Xiang, Kerstin B. Meyer, Kourosh Saeb-Parsy, Sarah A Teichmann & Hongbo Zhang 2024 Apr.

3常用marker(二)

Mural Cell Markers

#SMOOTH MUSCLE CELLS
FeaturePlot(df.harmony, features = "MYH11", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "ACTA2", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "TAGLN", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#PERICYTES
FeaturePlot(df.harmony, features = "RGS5", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "CSPG4", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "PDGFRB", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

Glial Cells Markers

FeaturePlot(df.harmony, features = "PROX1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MPZ", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "NCAM1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "CDH19", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "SOX10", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "PLP1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)


Adipocites Markers

FeaturePlot(df.harmony, features = "PLIN1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "ADIPOQ", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MMRN1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "CCL21", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

Tenocytes Markers

FeaturePlot(df.harmony, features = "FMOD", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "TNMD", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL22A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "SCX", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "DLG2", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "FBN1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

Endothelial Markers

#FeaturePlot(df.harmony, features = "PCDHA6", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#ARTERIAL
FeaturePlot(df.harmony, features = "FBLN5", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "DLL4", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "SEMA3G", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#CAPILLARIES
FeaturePlot(df.harmony, features = "RGCC", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#VENOUS
FeaturePlot(df.harmony, features = "EPHB4", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

Myonuclei Markers

FeaturePlot(df.harmony, features = "TTN", min.cutoff = "q9", order = T, cols = c("lightblue", "navy"), raster = FALSE)

#IMMATURE MYOCYTE
FeaturePlot(df.harmony, features = "MYMX", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MYOG", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

#REG MYONUCLEI
FeaturePlot(df.harmony, features = "FLNC", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MYH3", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "MYH8", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "XIRP1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)


NMJ Myonuclei Markers (Neuromuscular junction)

#NMJ
FeaturePlot(df.harmony, features = "CHRNE", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "CHRNA1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "PRKAR1A", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL25A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "UTRN", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COLQ", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "ABLIM2", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "VAV3", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "UFSP1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

MTJ Myonuclei Markers (Myotendinous junction)

#MTJ
FeaturePlot(df.harmony, features = "COL22A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "PIEZO2", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL24A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL6A1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "FSTL1", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "COL6A3", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)
FeaturePlot(df.harmony, features = "TIGD4", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

FeaturePlot(mini_df.harmony.harmony, features = "EYS", min.cutoff = "q9", order = TRUE, cols = c("lightblue", "navy"), raster = FALSE)

出自下面paper:👇

Lai, Y., Ramírez-Pardo, I., Isern, J. et al. Multimodal cell atlas of the ageing human skeletal muscle. Nature (2024).


alt
最后祝大家早日不卷!~

点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

📍 往期精彩

📍 🤩 LASSO | 不来看看怎么美化你的LASSO结果吗!?
📍 🤣 chatPDF | 别再自己读文献了!让chatGPT来帮你读吧!~
📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......

alt

alt

alt

alt

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/596726.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

文心一言 VS 讯飞星火 VS chatgpt (253)-- 算法导论18.2 6题

六、假设 B-TREE-SEARCH 的实现是在每个结点内采用二分查找&#xff0c;而不是线性查找。证明&#xff1a;无论怎样选择 t ( t 为 n 的函数)&#xff0c;这种实现所需的 CPU 时间都为 O(lgn)。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 首先&#xff0c;我…

tkinter/python:第一个GUI程序——制作一个数据录入界面

下图是在网上搜寻的一个案例图样&#xff0c;经过了调整修改&#xff0c;登录时界面图如下&#xff1a; 登录后点击百货店铺按钮&#xff0c;界面如下 一、创建root窗口&#xff1a; geometry接收一个字符串&#xff0c;也就是需要建立的窗口尺寸和位置&#xff0c;geometry(…

【Osek网络管理测试】[TG3_TC6]等待总线睡眠状态_2

&#x1f64b;‍♂️ 【Osek网络管理测试】系列&#x1f481;‍♂️点击跳转 文章目录 1.环境搭建2.测试目的3.测试步骤4.预期结果5.测试结果 1.环境搭建 硬件&#xff1a;VN1630 软件&#xff1a;CANoe 2.测试目的 验证DUT在满足进入等待睡眠状态的条件时是否进入该状态 …

Vue 基础语法

【1】模板语法 &#xff08;1&#xff09;差值表达式 {{}}是 Vue.js 中的文本插值表达式。 它用于在模板中输出数据或表达式的值。当数据或表达式的值发生变化时&#xff0c;插值表达式会自动更新。 补充&#xff1a;三目运算符 它的基本语法是 Condition ? A : B&#xff0…

解密SSL/TLS:密码套件扫描仪的深度解析(C/C++代码实现)

解密SSL/TLS流量通常是为了分析和审计加密通信&#xff0c;以确保数据传输的安全性和合规性。密码套件扫描仪是实现这一目的的一种工具&#xff0c;它可以提供关于SSL/TLS配置的详细信息&#xff0c;帮助安全专家评估潜在的风险。 SSL/TLS协议基础 SSL/TLS协议是网络安全中不…

Redis探索之旅(基础)

目录 今日良言&#xff1a;满怀憧憬&#xff0c;阔步向前 一、基础命令 1.1 通用命令 1.2 五大基本类型的命令 1.2.1 String 1.2.2 Hash 1.2.3 List 1.2.4 Set 1.2.5 Zset 二、过期策略以及单线程模型 2.1 过期策略 2.2 单线程模型 2.3 Redis 效率为什么这么高 三…

AI人才争夺战,华尔街入局:豪掷百万美元年薪抢人 | 最新快讯

量子位公众号 QbitAI 继硅谷之后&#xff0c;华尔街也入局“AI 人才争夺大战”。 他们的目标非常明确——抢的就是高精尖的 AI 专家。 △图源&#xff1a;Business Insider 现在这条“街”上&#xff0c;不论是银行、对冲基金还是私募股权公司都已纷纷下场&#xff0c;可谓是豪…

(读书笔记-大模型) LLM Powered Autonomous Agents

目录 智能体系统的概念 规划组件 记忆组件 工具组件 案例研究 智能体系统的概念 在大语言模型&#xff08;LLM&#xff09;赋能的自主智能体系统中&#xff0c;LLM 充当了智能体的大脑&#xff0c;其三个关键组件分别如下&#xff1a; 首先是规划&#xff0c;它又分为以下…

2024第六届人工智能与教育国际研讨会(WAIE 2024)即将召开!

2024第六届人工智能与教育国际研讨会&#xff08;WAIE 2024&#xff09;将于2024年9月28-30日在日本东京举行。WAIE 2024的召开&#xff0c;旨在汇聚全球智慧&#xff0c;共同探讨人工智能在教育领域的应用与发展&#xff0c;找到人工智能与教育融合发展的最佳路径&#xff0c;…

从零开始的软件测试学习之旅(五)web测试项目

这里写目录标题 功能型测试非功能性测试面试拓展项目与数据库关系 测试用例设计—基于TPshop前台下单流程 功能型测试 一.设计测试 a,需求分析 1.输入分析 分析项目中要求如:输入长度,类型要求,组成规则,是否为空,是否重复 2.交付分析 判断所有数据正确,有错误给出提示(优化…

i.MX 6ULL 裸机 IAR 环境安装

一. IAR 的安装请自行搜索 二. 使用最新版本的 IAR&#xff0c;需要修改 SDK 1. 在 SDK 的 core_ca7.h 加上 #include "intrinsics.h" /* IAR Intrinsics */ 2. debug 时需要修改每个工程下的 ddr_init.jlinkscript&#xff0c;参考链接 Solved: How to conn…

双重检验锁方式实现单例模式

单例模式&#xff08;Singleton Pattern&#xff09;&#xff1a;是指在内存中只会创建且仅创建一次对象的设计模式。在程序中多次使用同一个对象且作用相同时&#xff0c;为了防止频繁地创建对象使得内存飙升&#xff0c;单例模式可以让程序仅在内存中创建一个对象&#xff0c…

电源小白入门学习7——USB充电、供电、电源路径管理

电源小白入门学习7——USB充电、供电、电源路径管理 USB充电系统需要考虑的因素开关充电和线性充电充电路径管理输入限流路径管理&#xff08;动态功率管理&#xff09;理想二极管帮助提高电池利用率输入过充抑制 上期我们介绍了锂离子电池的电池特性&#xff0c;及充电电路设计…

OpenNJet评测,探寻云原生之美

在信息时代的大海上&#xff0c;云原生应用引擎如一艘航行于波涛之间的帆船&#xff0c;承载着创新的梦想和数字化的未来。本文将带领您登上这艘船&#xff0c;聚焦其中之一的OpenNJet&#xff0c;一同探寻其中的奥秘和精妙&#xff0c;领略其独特之美。 OpenNJet 内容浅析 O…

【JavaScript】数据类型转换

JavaScript 中的数据类型转换主要包括两种&#xff1a;隐式类型转换&#xff08;Implicit Type Conversion&#xff09;和显式类型转换&#xff08;Explicit Type Conversion&#xff09;。 1. 隐式类型转换&#xff08;自动转换&#xff09;&#xff1a; js 是动态语言&…

代码随想录第51天 | 309.最佳买卖股票时机含冷冻期

309.最佳买卖股票时机含冷冻期 309. 买卖股票的最佳时机含冷冻期 - 力扣&#xff08;LeetCode&#xff09; 代码随想录 (programmercarl.com) 动态规划来决定最佳时机&#xff0c;这次有冷冻期&#xff01;| LeetCode&#xff1a;309.买卖股票的最佳时机含冷冻期_哔哩哔哩_bi…

ncnn 算子操作描述

ncnn 算子操作描述&#xff0c;具体查询见 ncnn/docs/developer-guide/operators.md at master Tencent/ncnn GitHub 都是从上述地方copy过来的&#xff0c;做备份。 具体如下&#xff1a; 1.AbsVal: 计算输入张量中的每个元素的绝对值。 y abs(x)one_blob_only 只支持…

Go 语言(四)【常用包使用】

1、命令行参数包 flag flag 包就是一个用来解析命令行参数的工具。 1.1、os.Args import ("fmt""os" )func main() {if len(os.Args) > 0 {for index, arg : range os.Args {fmt.Printf("args[%d]%v\n", index, arg)}} } 运行结果&#…

【Docker】docker部署lnmp和搭建wordpress网站

环境准备 docker&#xff1a;192.168.67.30 虚拟机&#xff1a;4核4G systemctl stop firewalld systemctl disable firewalld setenforce 0 安装docker #安装依赖包 yum -y install yum-utils device-mapper-persistent-data lvm2 #设置阿里云镜像 yum-config-manager --add…

MTEB - Embedding 模型排行榜

文章目录 关于 MTEBMTEB 任务和数据集概览使用 MTEB Pythont 库Installation使用 关于 MTEB MTEB : Massive Text Embedding Benchmark github : https://github.com/embeddings-benchmark/mtebhuggingface : https://huggingface.co/spaces/mteb/leaderboardpaper : https:/…