目录
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
锂电池SOH估计 | Matlab实现基于ALO-SVR模型的锂电池SOH估计
蚁狮优化支持向量机锂电池健康状态SOH估计;
具体流程如下;
1、分析锂离子电池老化数据集,从中选取具有代表电池性能衰减的间接特征作为SOH估计模型的输入,实际SOH作为输出;
2、选取约前60%数据作为模型的训练样本,对模型进行训练,剩余样本作为测试样本,从而得到了不同算法的SOH估计值。
程序设计
- 完整程序和数据获取方式:私信博主回复Matlab实现基于ALO-SVR模型的锂电池SOH估计。
%% 绘制线性拟合图
%% 训练集拟合效果图
figure
plot(T_train,T_sim1,'OR');
xlabel('真实值')
ylabel('预测值')
string = {'训练集效果图';['R^2_c=' num2str(R1) ' RMSEC=' num2str(error1) ]};
title(string)
hold on ;h=lsline;
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 预测集拟合效果图
figure
plot(T_test,T_sim2,'ob');
xlabel('真实值')
ylabel('预测值')
string1 = {'测试集效果图';['R^2_p=' num2str(R2) ' RMSEP=' num2str(error2) ]};
title(string1)
hold on ;h=lsline();
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 求平均
R3=(R1+R2)./2;
error3=(error1+error2)./2;
%% 总数据线性预测拟合图
tsim=[T_sim1,T_sim2]';
S=[T_train,T_test]';
figure
plot(S,tsim,'ob');
xlabel('真实值')
ylabel('预测值')
string1 = {'所有样本拟合预测图';['R^2_p=' num2str(R3) ' RMSEP=' num2str(error3) ]};
title(string1)
hold on ;h=lsline();
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 打印出评价指标
disp(['-----------------------误差计算--------------------------'])
disp(['评价结果如下所示:'])
disp(['平均绝对误差MAE为:',num2str(MAE2)])
disp(['均方误差MSE为: ',num2str(mse2)])
disp(['均方根误差RMSEP为: ',num2str(error2)])
disp(['决定系数R^2为: ',num2str(R2)])
disp(['剩余预测残差RPD为: ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为: ',num2str(MAPE2)])
grid
参考资料
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501