easyrsa1
下载点击打开附件
e = 65537 n = 1455925529734358105461406532259911790807347616464991065301847 c = 69380371057914246192606760686152233225659503366319332065009
题目中给了e,n,c的值。
使用在线网址factordb.com
分解n得到p,q
编写脚本
import gmpy2
import binascii
e = 65537
n = 1455925529734358105461406532259911790807347616464991065301847
c = 69380371057914246192606760686152233225659503366319332065009
p = 1201147059438530786835365194567
q = 1212112637077862917192191913841
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
m = gmpy2.powmod(c,d,n)
print(binascii.unhexlify(hex(m)[2:]))
运行得出flag
easyrsa2
打开附件
两组数中e相同,n,c不同,考虑模不互素的情况,由于n1,n2不互素,那么必然有一个公因数,由于n是由两个质数相乘得到的,所以只有两个因数,那他们的公因数设为p求出n1与n2的最大公因数即为p,则q1=n1//p, q2=n2//p。可以得到q和d,从而求解m。
模仿大佬的脚本进行编写
import gmpy2
import binascii
e = 65537
n1 = 23686563925537577753047229040754282953352221724154495390687358877775380147605152455537988563490716943872517593212858326146811511103311865753018329109314623702207073882884251372553225986112006827111351501044972239272200616871716325265416115038890805114829315111950319183189591283821793237999044427887934536835813526748759612963103377803089900662509399569819785571492828112437312659229879806168758843603248823629821851053775458651933952183988482163950039248487270453888288427540305542824179951734412044985364866532124803746008139763081886781361488304666575456680411806505094963425401175510416864929601220556158569443747
c1 = 1627484142237897613944607828268981193911417408064824540711945192035649088104133038147400224070588410335190662682231189997580084680424209495303078061205122848904648319219646588720994019249279863462981015329483724747823991513714172478886306703290044871781158393304147301058706003793357846922086994952763485999282741595204008663847963539422096343391464527068599046946279309037212859931303335507455146001390326550668531665493245293839009832468668390820282664984066399051403227990068032226382222173478078505888238749583237980643698405005689247922901342204142833875409505180847943212126302482358445768662608278731750064815
n2 = 22257605320525584078180889073523223973924192984353847137164605186956629675938929585386392327672065524338176402496414014083816446508860530887742583338880317478862512306633061601510404960095143941320847160562050524072860211772522478494742213643890027443992183362678970426046765630946644339093149139143388752794932806956589884503569175226850419271095336798456238899009883100793515744579945854481430194879360765346236418019384644095257242811629393164402498261066077339304875212250897918420427814000142751282805980632089867108525335488018940091698609890995252413007073725850396076272027183422297684667565712022199054289711
c2 = 2742600695441836559469553702831098375948641915409106976157840377978123912007398753623461112659796209918866985480471911393362797753624479537646802510420415039461832118018849030580675249817576926858363541683135777239322002741820145944286109172066259843766755795255913189902403644721138554935991439893850589677849639263080528599197595705927535430942463184891689410078059090474682694886420022230657661157993875931600932763824618773420077273617106297660195179922018875399174346863404710420166497017196424586116535915712965147141775026549870636328195690774259990189286665844641289108474834973710730426105047318959307995062
p = gmpy2.gcd(n1,n2)
q = n1 // p
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
m = gmpy2.powmod(c1,d,n1)
print(binascii.unhexlify(hex(m)[2:]))
运行得到flag
easyrsa3
点击打开附件
查阅资料为,考查共模攻击。
已知n,e1,e2,c1,c2,m和n相同,c和e不同。
c1 = m^e1 % n ……1
c2 = m^e2 % n ……2
由拓展欧几里得定理可以得到e1*s1+e2*s2=1
1式取s1次方得到c1^s1 = m^(e1*s1)%n
2式取s2次方得到c2^s2 = m^(e2^s2)%n
两式相乘得到c1^s1*c2^s2 = m^(e1*s1+e2*s2)%n=m%n
因为m<n,所以c1^s1*c2^s2=m,得到m
模仿大佬的脚本进行编写
import gmpy2
import binascii
n = 15944475431088053285580229796309956066521520107276817969079550919586650535459242543036143360865780730044733026945488511390818947440767542658956272380389388112372084760689777141392370253850735307578445988289714647332867935525010482197724228457592150184979819463711753058569520651205113690397003146105972408452854948512223702957303406577348717348753106868356995616116867724764276234391678899662774272419841876652126127684683752880568407605083606688884120054963974930757275913447908185712204577194274834368323239143008887554264746068337709465319106886618643849961551092377843184067217615903229068010117272834602469293571
e1 = 797
c1 = 11157593264920825445770016357141996124368529899750745256684450189070288181107423044846165593218013465053839661401595417236657920874113839974471883493099846397002721270590059414981101686668721548330630468951353910564696445509556956955232059386625725883038103399028010566732074011325543650672982884236951904410141077728929261477083689095161596979213961494716637502980358298944316636829309169794324394742285175377601826473276006795072518510850734941703194417926566446980262512429590253643561098275852970461913026108090608491507300365391639081555316166526932233787566053827355349022396563769697278239577184503627244170930
e2 = 521
c2 = 6699274351853330023117840396450375948797682409595670560999898826038378040157859939888021861338431350172193961054314487476965030228381372659733197551597730394275360811462401853988404006922710039053586471244376282019487691307865741621991977539073601368892834227191286663809236586729196876277005838495318639365575638989137572792843310915220039476722684554553337116930323671829220528562573169295901496437858327730504992799753724465760161805820723578087668737581704682158991028502143744445435775458296907671407184921683317371216729214056381292474141668027801600327187443375858394577015394108813273774641427184411887546849
s = gmpy2.gcdext(e1,e2)
m1 = gmpy2.powmod(c1,s[1],n)
m2 = gmpy2.powmod(c2,s[2],n)
m = (m1*m2)%n
print(binascii.unhexlify(hex(m)[2:]))
运行得出flag
easyrsa4
打开附件
观察得知,e很小,搜索为低加密指数攻击。
由于e*d=1%n,c=m^e%n, c也很小,说明m很小,m^3不一定比n大,猜测d=e^(-1)=1/3
有大佬解释如下
脚本如下
import gmpy2
import binascii
e = 3
n = 18970053728616609366458286067731288749022264959158403758357985915393383117963693827568809925770679353765624810804904382278845526498981422346319417938434861558291366738542079165169736232558687821709937346503480756281489775859439254614472425017554051177725143068122185961552670646275229009531528678548251873421076691650827507829859299300272683223959267661288601619845954466365134077547699819734465321345758416957265682175864227273506250707311775797983409090702086309946790711995796789417222274776215167450093735639202974148778183667502150202265175471213833685988445568819612085268917780718945472573765365588163945754761
c = 150409620528139732054476072280993764527079006992643377862720337847060335153837950368208902491767027770946661
i = 0
while True:
if gmpy2.iroot((c+i*n),3)[1] == True:
m = gmpy2.iroot((c+i*n),3)[0]
break
i += 1
print(binascii.unhexlify(hex(m)[2:]))
运行得到flag
easyrsa5
此题完全参照大佬的题解
e很大,故可知是低解密指数攻击
使用破解脚本:求出d的值
文件下载地址项目首页 - rsa-wiener-attack - GitCode
注意,这里要将破解脚本和rsa-wiener-attack解压后的py文件放在同一个目录下
脚本如下
import gmpy2
import binascii
import RSAwienerHacker
e = 284100478693161642327695712452505468891794410301906465434604643365855064101922252698327584524956955373553355814138784402605517536436009073372339264422522610010012877243630454889127160056358637599704871937659443985644871453345576728414422489075791739731547285138648307770775155312545928721094602949588237119345
n = 468459887279781789188886188573017406548524570309663876064881031936564733341508945283407498306248145591559137207097347130203582813352382018491852922849186827279111555223982032271701972642438224730082216672110316142528108239708171781850491578433309964093293907697072741538649347894863899103340030347858867705231
c = 350429162418561525458539070186062788413426454598897326594935655762503536409897624028778814302849485850451243934994919418665502401195173255808119461832488053305530748068788500746791135053620550583421369214031040191188956888321397450005528879987036183922578645840167009612661903399312419253694928377398939392827
d = RSAwienerHacker.hack_RSA(e,n)
m = gmpy2.powmod(c,d,n)
print(binascii.unhexlify(hex(m)[2:]))
运行脚本
easyrsa6
下载并打开附件
内容如下:
import gmpy2,libnum
from Crypto.Util.number import getPrime
from secret import flag
e = 0x10001
p = getPrime(1024)
q = gmpy2.next_prime(p)
n = p * q
print("n =",n)
m = libnum.s2n(flag)
c = pow(m,e,n)
print("c =", c)
# n = 26737417831000820542131903300607349805884383394154602685589253691058592906354935906805134188533804962897170211026684453428204518730064406526279112572388086653330354347467824800159214965211971007509161988095657918569122896402683130342348264873834798355125176339737540844380018932257326719850776549178097196650971801959829891897782953799819540258181186971887122329746532348310216818846497644520553218363336194855498009339838369114649453618101321999347367800581959933596734457081762378746706371599215668686459906553007018812297658015353803626409606707460210905216362646940355737679889912399014237502529373804288304270563
# c = 18343406988553647441155363755415469675162952205929092244387144604220598930987120971635625205531679665588524624774972379282080365368504475385813836796957675346369136362299791881988434459126442243685599469468046961707420163849755187402196540739689823324440860766040276525600017446640429559755587590377841083082073283783044180553080312093936655426279610008234238497453986740658015049273023492032325305925499263982266317509342604959809805578180715819784421086649380350482836529047761222588878122181300629226379468397199620669975860711741390226214613560571952382040172091951384219283820044879575505273602318856695503917257
题解:
p和q很相近,所以可以使用yafu分解n。
基于RSA解题时yafu的使用-CSDN博客
大整数因数分解工具——yafu_yafu工具命令-CSDN博客
import gmpy2
import binascii
from Crypto.Util.number import getPrime
e = 0x10001
n = 26737417831000820542131903300607349805884383394154602685589253691058592906354935906805134188533804962897170211026684453428204518730064406526279112572388086653330354347467824800159214965211971007509161988095657918569122896402683130342348264873834798355125176339737540844380018932257326719850776549178097196650971801959829891897782953799819540258181186971887122329746532348310216818846497644520553218363336194855498009339838369114649453618101321999347367800581959933596734457081762378746706371599215668686459906553007018812297658015353803626409606707460210905216362646940355737679889912399014237502529373804288304270563
c = 18343406988553647441155363755415469675162952205929092244387144604220598930987120971635625205531679665588524624774972379282080365368504475385813836796957675346369136362299791881988434459126442243685599469468046961707420163849755187402196540739689823324440860766040276525600017446640429559755587590377841083082073283783044180553080312093936655426279610008234238497453986740658015049273023492032325305925499263982266317509342604959809805578180715819784421086649380350482836529047761222588878122181300629226379468397199620669975860711741390226214613560571952382040172091951384219283820044879575505273602318856695503917257
p = 163515803000813412334620775647541652549604895368507102613553057136855632963322853570924931001138446030409251690646645635800254129997200577719209532684847732809399187385176309169421205833279943214621695444496660249881675974141488357432373412184140130503562295159152949524373214358417567189638680209172147385801
q = 163515803000813412334620775647541652549604895368507102613553057136855632963322853570924931001138446030409251690646645635800254129997200577719209532684847732809399187385176309169421205833279943214621695444496660249881675974141488357432373412184140130503562295159152949524373214358417567189638680209172147385163
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
m = gmpy2.powmod(c,d,n)
print(binascii.unhexlify(hex(m)[2:]))
运行
ctfshow CRYPTO RSA_e = 0x10001 p>>128<<128 = 0xd1c520d9798f811e87f4ff-CSDN博客
ctfshow RSA篇_crypto_fakersa-CSDN博客
CTFSHOW easyrsa1-6 Writeup_n很大 给出e和c-CSDN博客