深度学习:基于TensorFlow、Keras,使用长短期记忆神经网络模型(LSTM)对Microsoft股票进行预测分析

股票交易

前言

系列专栏:机器学习:高级应用与实践【项目实战100+】【2024】✨︎
在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非结构化数据以及指导复杂的模型,如卷积神经网络、门控循环单元、大型语言模型和强化学习模型

在本文中,我们将使用机器学习技术实现 Microsoft 股价预测。我们将使用 TensorFlow,这是一个由 Google 开发的开源 Python 机器学习框架。借助 TensorFlow,您可以轻松实现时间序列预测数据。由于股价预测是时间序列预测问题之一,我们将使用机器学习技术构建端到端的 Microsoft 股价预测。

目录

  • 1. 相关库和数据集
    • 1.1 相关库介绍
    • 1.2 数据集介绍
    • 1.3 描述性统计
    • 1.4数据的信息
  • 2. 数据清洗与处理
  • 3. 探索性数据分析
    • 3.1 股票的开盘、收盘价
    • 3.2 股票的交易量
    • 3.3 股票不同特征之间的相关性
  • 4. 数据建模(循环神经网络模型)
    • 4.1 数据准备(拆分为训练集和测试集)
    • 4.2 模型构建(LSTM)
    • 4.3 编译和拟合
    • 4.4 模型评估

1. 相关库和数据集

1.1 相关库介绍

Python 库使我们能够非常轻松地处理数据并使用一行代码执行典型和复杂的任务。

  • Pandas – 该库有助于以 2D 数组格式加载数据框,并具有多种功能,可一次性执行分析任务。
  • Numpy – Numpy 数组速度非常快,可以在很短的时间内执行大型计算。
  • Matplotlib/Seaborn – 此库用于绘制可视化效果,用于展现数据之间的相互关系。
  • Sklearn – 包含多个库,这些库具有预实现的功能,用于执行从数据预处理到模型开发和评估的任务。
  • Tensorflow – TensorFlow 是由 Google Developers 开发的机器学习框架,旨在使机器学习算法的实现变得轻而易举。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from datetime import datetime
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import metrics
from keras.metrics import RootMeanSquaredError 
from sklearn.preprocessing import StandardScaler

import warnings 
warnings.filterwarnings("ignore") 

1.2 数据集介绍

现在,让我们加载包含可交易天数的 Microsoft 股票的 OHLC 数据的数据集。

df = pd.read_csv('Microsoft_Stock.csv') 

.head()函数根据位置返回对象的前 n 行。该函数可用于快速测试对象中的数据类型是否正确。

df.head()

数据对象的前五行

1.3 描述性统计

.describe()生成描述性统计信息。描述性统计包括总结数据集分布的中心倾向、分散性和形状的统计,不包括 NaN 值。

可分析数值序列和对象序列,以及混合数据类型的 DataFrame 列集。输出结果将根据所提供的数据而有所不同。

df.describe()

描述性统计

1.4数据的信息

.info()方法打印有关DataFrame的信息,包括索引dtype和列、非null值以及内存使用情况。

df.info()

数据的信息

2. 数据清洗与处理

更改 Date 的数据类型,将object的对象转化为datetime类型

df['Date'] = df['Date'].apply(lambda x: datetime.strptime(x, "%m/%d/%Y %H:%M:%S"))
df['Date']

datetime对象

3. 探索性数据分析

EDA是一种使用视觉技术分析数据的方法。它用于发现趋势和模式,或借助统计摘要和图形表示来检查假设。

3.1 股票的开盘、收盘价

plt.style.use("fivethirtyeight")
plt.plot(df['Date'], df['Open'], color="blue", label="open") 
plt.plot(df['Date'], df['Close'], color="green", label="close") 
plt.title("Microsoft Open-Close Stock") 
plt.legend() 

股票的开盘与收盘价

3.2 股票的交易量

交易量是指一段时间内(通常是一天内)易手的资产或证券的数量。例如,股票交易量是指每天开盘和收盘之间交易的证券股票数量。交易量以及交易量随时间的变化是技术交易者的重要输入。

plt.plot(df['Date'], df['Volume']) 
plt.show()

股票的交易量

3.3 股票不同特征之间的相关性

相关性是一种衡量两个变量相对于彼此移动程度的统计数据,其值必须介于-1.0和+1.0之间。相关性衡量关联,但不显示 x 是否导致 y,反之亦然,或者关联是否由第三个因素引起。

sns.heatmap(df.corr(), annot=True, cbar=False) 
plt.show() 

股票不同特征之间的相关性
现在,让我们绘制 2015 年至 2021 年期间 Microsoft 股票的收盘价,即 6 年的时间跨度。
在这里插入图片描述

4. 数据建模(循环神经网络模型)

4.1 数据准备(拆分为训练集和测试集)

# prepare the training set samples 
msft_close = df.filter(['Close']) 
dataset = msft_close.values 
training = int(np.ceil(len(dataset) *.95)) 

# scale the data 
ss = StandardScaler() 
ss = ss.fit_transform(dataset) 

train_data = ss[0:int(training), :] 

x_train = [] 
y_train = [] 

# considering 60 as the batch size, 
# create the X_train and y_train 
for i in range(60, len(train_data)): 
	x_train.append(train_data[i-60:i, 0]) 
	y_train.append(train_data[i, 0]) 

x_train, y_train = np.array(x_train), np.array(y_train) 
X_train = np.reshape(x_train, 
					(x_train.shape[0], 
					x_train.shape[1], 1)) 

4.2 模型构建(LSTM)

为了解决时间序列或股价预测问题,我们建立了一个循环神经网络模型,该模型可以利用单元状态和记忆状态记忆之前的状态,非常方便。由于 RNN 难以训练和修剪消失梯度,我们使用了 LSTM,它是 RNN 的门控单元,LSTM 可以减少消失梯度问题。

model = keras.models.Sequential() 
model.add(keras.layers.LSTM(units=64, 
							return_sequences=True, 
							input_shape 
							=(X_train.shape[1], 1))) 
model.add(keras.layers.LSTM(units=64)) 
model.add(keras.layers.Dense(128)) 
model.add(keras.layers.Dropout(0.5)) 
model.add(keras.layers.Dense(1)) 

print(model.summary()) 

LSTM

4.3 编译和拟合

在编译模型时,我们需要提供以下三个基本参数:

optimizer - 通过梯度下降法优化成本函数的方法。
loss - 损失函数,我们通过它来监控模型是否在训练中不断改进。
metrics - 通过预测训练数据和验证数据来评估模型。

model.compile(optimizer='adam', loss='mae', 
			metrics = [metrics.MeanSquaredError(), metrics.AUC()]) 

history = model.fit(X_train, y_train, epochs=20) 

编译拟合过程
我们得到的平均绝对误差为 0.0661,接近完美误差分值。

4.4 模型评估

现在,我们已经准备好了模型,让我们用不同的指标来评估它在验证数据上的性能。为此,我们将首先使用该模型预测验证数据的类别,然后将输出结果与真实标签进行比较。

testing = ss[training - 60:, :] 
x_test = [] 
y_test = dataset[training:, :] 
for i in range(60, len(testing)): 
	x_test.append(testing[i-60:i, 0]) 

x_test = np.array(x_test) 
X_test = np.reshape(x_test, 
					(x_test.shape[0], 
					x_test.shape[1], 1)) 

pred = model.predict(X_test) 

模型评估
现在,让我们绘制微软股票价格的已知数据和预测价格趋势图,看看它们是与之前的趋势一致,还是完全不同。

train = df[:training] 
test = df[training:] 
test['Predictions'] = pred 

plt.figure(figsize=(10, 8)) 
plt.plot(train['Close'], c="b") 
plt.plot(test[['Close', 'Predictions']]) 
plt.title('Microsoft Stock Close Price') 
plt.ylabel("Close") 
plt.legend(['Train', 'Test', 'Predictions']) 

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/591021.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 植物大战僵尸

文章目录 效果图项目结构实现思路源代码 效果图 项目结构 实现思路 下面是代码的实现思路: 导入必要的库和模块:首先,我们导入了Python的os、time库以及pygame库,还有植物大战僵尸游戏中用到的各个植物和僵尸的类。 初始化游戏和…

基于Python的LSTM网络实现单特征预测回归任务(TensorFlow)

目录 一、数据集 二、任务目标 三、代码实现 1、从本地路径中读取数据文件 2、数据归一化 3、创建配置类,将LSTM的各个超参数声明为变量,便于后续使用 4、创建时间序列数据 5、划分数据集 6、定义LSTM网络 (1)创建顺序模…

【深度学习】第一门课 神经网络和深度学习 Week 4 深层神经网络

🚀Write In Front🚀 📝个人主页:令夏二十三 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝 📣系列专栏:深度学习 💬总结:希望你看完之后,能对…

G1 - 生成对抗网络(GAN)

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 目录 理论知识生成器判别器基本原理 环境步骤环境设置数据准备模型设计模型训练模型效果展示 总结与心得体会 理论知识 生成对抗网络(Generative …

Jenkins流水线部署springboot项目

文章目录 Jenkins流水线任务介绍Jenkins流水线任务构建Jenkins流水线任务Groovy脚本Jenkinsfile实现 Jenkins流水线任务实现参数化构建拉取Git代码构建代码制作自定义镜像并发布 Jenkins流水线任务介绍 之前采用Jenkins的自由风格构建的项目,每个步骤流程都要通过不…

二维数组的鞍点(C语言)

一、鞍点解释&#xff1b; 鞍点就是该位置上的元素在该行上最大、在该列上最小&#xff1b; 二、N-S流程图&#xff1b; 三、运行结果&#xff1b; 四、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff…

Java_JVM_JVMs

JVM 官方文档说明文档目录 官方文档 JVM Specification 说明 以Java SE 17为标准 文档目录 2&#xff1a;JVM 结构 class文件数据类型 基本数据类型引用数据类型 运行时数据区 栈帧 其他内容 对象的表示浮点数运算特殊方法 初始化方法【实例、类】多态方法 3&#xff…

AI代理架构的发展:从单一到多代理系统的演进及其影响分析

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Python中无法pip的解决办法和pip的介绍

什么是pip&#xff1f; PIP是通用的Python包管理工具&#xff0c;提供了对 Python 包的查找、下载、安装、卸载、更新等功能。安装诸如Pygame、Pymysql、requests、Django等Python包时&#xff0c;都要用到pip。 注意&#xff1a;在Python3.4&#xff08;一说是3.6&#xff09…

自动化滇医通

###我已经将数据爬取出来### 现在开源集合大家的思路一起研究 &#xff08;请更换ip 以及 暂停时间 不然会提示违规操作&#xff09; 脚本读取预约信息后开始随机抢一家的&#xff0c;qiang方法里面请自行修改抓包数据参数&#xff01;&#xff01; 现在开源大家一起讨论 pyt…

富文本编辑器 iOS

https://gitee.com/klkxxy/WGEditor-mobile#wgeditor-mobile 采用iOS系统浏览器做的一款富文本编辑器工具。 原理就是使用WKWebView加载一个本地的一个html文件&#xff0c;从而达到编辑器功能的效果&#xff01; 由于浏览器的一些特性等&#xff0c;富文本编辑器手机端很难做…

【开源物联网平台】window环境下搭建调试监控设备环境

&#x1f308; 个人主页&#xff1a;帐篷Li &#x1f525; 系列专栏&#xff1a;FastBee物联网开源项目 &#x1f4aa;&#x1f3fb; 专注于简单&#xff0c;易用&#xff0c;可拓展&#xff0c;低成本商业化的AIOT物联网解决方案 目录 一、使用docker脚本部署zlmediakit 1.1 …

WebDriver使用带用户名密码验证的IP代理解决方案

背景&#xff0c;使用python3 selenium 先定义一个方法&#xff0c;这里主要用到了chrome插件的功能&#xff0c;利用这个插件来放进代理内容。 def create_proxy_auth_extension(proxy_host, proxy_port,proxy_username, proxy_password, schemehttp):manifest_json "…

【HAL库 STM32】输入捕获并实现超声波测距

文章目录 HC-SR04 超声波模块简介HC-SR04 工作原理如何使用HC-SR04模块程序效果 一、工程配置代码如果您发现文章有错误请与我留言&#xff0c;感谢 HC-SR04 超声波模块简介 HC-SR04 工作原理 模块有2个超声波换能器&#xff08;如图所示&#xff09;&#xff0c;一个发出声波…

Spark Stream

一、Spark Streaming是什么 Spark Streaming 用于流式数据的处理。Spark Streaming 支持的数据输入源很多&#xff0c;例如&#xff1a;Kafka、Flume、Twitter、ZeroMQ 和简单的 TCP 套接字等等。数据输入后可以用 Spark 的高度抽象原语如&#xff1a;map、reduce、join、wind…

基于SSM SpringBoot vue教务排课系统

基于SSM SpringBoot vue教务排课系统 系统功能 登录 个人中心 学生信息管理 教师信息管理 课室信息管理 班级信息管理 系别信息管理 专业信息管理 课程信息管理 选课信息管理 课表信息管理 开发环境和技术 开发语言&#xff1a;Java 使用框架: SSM(Spring SpringMVC Myba…

✔ ★Java大项目——用Java模拟RabbitMQ实现一个消息队列(二)【创建核心类、封装数据库操作】

✔ ★Java大项目——用Java模拟RabbitMQ实现一个消息队列 四. 项⽬创建五. 创建核⼼类 ★创建 Exchange&#xff08;名字、类型、持久化、自动删除、参数&#xff09;创建 MSGQueue&#xff08;名字、持久化、独占标识&#xff09;创建 Binding&#xff08;交换机名字、队列名字…

pymeshlab加载物体、创建UV映射(基于平面投影)、创建并保存UV纹理和物体模型

一、关于环境 请参考&#xff1a;pymeshlab遍历文件夹中模型、缩放并导出指定格式-CSDN博客 二、关于代码 本文所给出代码仅为参考&#xff0c;禁止转载和引用&#xff0c;仅供个人学习。本文所给出的例子是https://download.csdn.net/download/weixin_42605076/89233917中的…

MySQL45讲(一)(40)

回顾binlog_formatstatement STATEMENT 记录SQL语句。日志文件小&#xff0c;节约IO&#xff0c;但是对一些系统函数不能准确复制或不能复制&#xff0c;如now()、uuid()等 在RR隔离级别下&#xff0c;binlog_formatstatement 如果执行insert select from 这条语句是对于一张…

uniapp 自定义相机插件(组件版、缩放、裁剪)组件 Ba-CameraView

自定义相机插件&#xff08;组件版、缩放、裁剪&#xff09; Ba-CameraView 简介&#xff08;下载地址&#xff09; Ba-CameraView 是一款自定义相机拍照组件&#xff0c;支持任意界面&#xff0c;支持裁剪 支持任意自定义界面支持手势缩放支持裁剪&#xff08;手势拖动、比…