数据可视化宝典:Matplotlib图形实战

  在数据分析领域,图形化展示数据是非常重要的环节。Python中的matplotlib库是绘制各类图形的强大工具。本文将介绍如何使用matplotlib绘制折线图、直方图、饼图、散点图和柱状图等数据分析中常见的图形,并附上相应的代码示例,可以当初matplotlib函数库来使用,将案列中的数据替换成自己真实的数据即可绘制出符合条件的图像。
  关于matplotlib进行数据可视化的案列,具体参考Matplotlib 3.6.0 文档示例库,里面给出各种图形可视化的案列代码,具体如下所示:
在这里插入图片描述
  下面示点进去带标签的分组条形图页面下官方代码案列;
  此示例显示如何创建分组条形图以及如何使用标签注释条形图。
在这里插入图片描述
  接下来我们将详细介绍matplotlib在进行数据可视化分析过程常用的图像绘制;

一、折线图(Line Plot)

  折线图通常用于展示数据随时间或其他连续变量的变化趋势。

import matplotlib.pyplot as plt
import numpy as np

# 创建数据
x = np.linspace(0, 10, 100)
y = np.sin(x)

# 绘制折线图
plt.plot(x, y)

# 设置图表标题和坐标轴标签
plt.title('Sin Curve')
plt.xlabel('x')
plt.ylabel('y')

# 显示图表
plt.show()

在这里插入图片描述

二、直方图(Histogram)

  直方图用于展示数据的分布情况,特别是连续型变量的分布情况。

import matplotlib.pyplot as plt
import numpy as np

# 创建数据
data = np.random.randn(1000)

# 绘制直方图
plt.hist(data, bins=30, edgecolor='black')

# 设置图表标题和坐标轴标签
plt.title('Histogram of Data')
plt.xlabel('Value')
plt.ylabel('Frequency')

# 显示图表
plt.show()

在这里插入图片描述

三、饼图(Pie Chart)

  饼图用于展示各类别的比例或占比。

import matplotlib.pyplot as plt

# 创建数据
labels = ['Category A', 'Category B', 'Category C']
sizes = [15, 30, 55]

# 绘制饼图
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)

# 设置图表标题
plt.title('Pie Chart Example')

# 显示图表
plt.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()

在这里插入图片描述

四、散点图(Scatter Plot)

  散点图用于展示两个变量之间的关系,通过点的分布来观察是否存在某种趋势或模式。

import matplotlib.pyplot as plt
import numpy as np

# 创建数据
x = np.random.rand(50)
y = np.random.rand(50)

# 绘制散点图
plt.scatter(x, y)

# 设置图表标题和坐标轴标签
plt.title('Scatter Plot Example')
plt.xlabel('X')
plt.ylabel('Y')

# 显示图表
plt.show()

在这里插入图片描述

五、柱状图(Bar Chart)

  柱状图用于比较不同类别或不同时间点的数据大小。

import matplotlib.pyplot as plt

# 创建数据
categories = ['Category 1', 'Category 2', 'Category 3']
values = [10, 15, 7]

# 绘制柱状图
plt.bar(categories, values)

# 设置图表标题和坐标轴标签
plt.title('Bar Chart Example')
plt.xlabel('Categories')
plt.ylabel('Values')

# 显示图表
plt.show()

在这里插入图片描述

六、箱线图(Box Plot)

  箱线图用于展示一组数据的分布情况,包括最小值、下四分位数、中位数、上四分位数和最大值。

  下面是一个简单的示例,说明如何绘制箱线图,其中特征名称作为X轴的标签:

import matplotlib.pyplot as plt
import numpy as np

# 创建一些示例数据
np.random.seed(10)
data = {
    'Feature 1': np.random.normal(0, 1, 100),
    'Feature 2': np.random.normal(1, 1.5, 100),
    'Feature 3': np.random.normal(-1, 0.7, 100),
    'Feature 4': np.random.normal(2, 2, 100)
}

# 提取数据列表和特征名称列表
values = list(data.values())
labels = list(data.keys())

# 绘制箱线图
fig, ax = plt.subplots()
ax.boxplot(values, vert=True, patch_artist=True, labels=labels)

# 设置图表标题
ax.set_title('Box Plot with Features as X-axis Labels')

# 显示网格
ax.grid(True)

# 显示图表
plt.show()

在这里插入图片描述

  设置vert=True(这是默认值,表示箱体是垂直的),并启用patch_artist=True以允许我们为箱体设置颜色。最后,我们设置了图表的标题,并显示了网格和图表。

  要绘制水平分布的箱线图(即箱体的长轴沿X轴方向),你需要对matplotlibboxplot函数进行一些调整。特别地,你需要设置vert参数为False,这样箱线图就会水平显示。下面是一个简单的示例,说明如何创建水平箱线图:

import matplotlib.pyplot as plt
import numpy as np

# 创建一些示例数据
np.random.seed(10)
data = {
    'Feature 1': np.random.normal(0, 1, 100),
    'Feature 2': np.random.normal(1, 1.5, 100),
    'Feature 3': np.random.normal(-1, 0.7, 100),
    'Feature 4': np.random.normal(2, 2, 100)
}

# 提取数据为列表
values = [data[feature] for feature in data]

# 创建箱线图的位置(即X轴上的刻度位置)
positions = np.arange(len(data))

# 绘制水平箱线图
fig, ax = plt.subplots()
ax.boxplot(values, vert=False, patch_artist=True, positions=positions, notch=False)

# 设置箱线图的颜色
colors = ['b', 'g', 'r', 'c']
for patch, color in zip(ax.artists, colors):
    patch.set_facecolor(color)

# 设置X轴和Y轴的标签
ax.set_xlabel('Value')
ax.set_ylabel('Features')
ax.set_yticklabels(data.keys())  # 设置Y轴刻度标签为特征的名称

# 显示网格
ax.grid(True)

# 显示图表
plt.show()

在这里插入图片描述

七、箱线图
  面积图(Area Chart)结合了折线图和面积图的特性,可以展示随时间或其他连续变量的数据变化趋势,并且通过堆叠面积来表示多个类别的数据总量及其各自贡献。

  下面是一个简单的示例代码,演示如何使用matplotlib绘制折线面积图:

import matplotlib.pyplot as plt
import numpy as np

# 创建数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

# 绘制折线图和折线面积图
fig, ax = plt.subplots()
ax.plot(x, y1, label='sin(x)', color='blue', linewidth=2)
ax.plot(x, y2, label='cos(x)', color='red', linewidth=2)

# 绘制y1的面积图
ax.fill_between(x, y1, where=y1>=0, color='lightblue', interpolate=True)
ax.fill_between(x, y1, where=y1<0, color='blue', interpolate=True)

# 绘制y2的面积图,注意要调整y的起始值以避免重叠
ax.fill_between(x, y1+y2, where=(y1+y2)>=0, color='lightpink', interpolate=True)
ax.fill_between(x, y1+y2, where=(y1+y2)<0, color='pink', interpolate=True)

# 设置图表标题和坐标轴标签
ax.set_title('Stacked Line Area Chart Example')
ax.set_xlabel('x')
ax.set_ylabel('y')

# 添加图例
ax.legend()

# 显示网格
ax.grid(True)

# 显示图表
plt.show()

在这里插入图片描述

  在上面的代码中,我们首先定义了两个函数y1y2,它们分别代表sin(x)cos(x)的值。然后,我们使用plot函数绘制了这两个函数的折线图。接下来,我们使用fill_between函数来绘制每个函数的面积图。需要注意的是,为了避免面积图之间的重叠,我们在绘制y2的面积图时,将y的起始值调整为y1+y2

  最后,我们设置了图表的标题、坐标轴标签,并添加了图例。调用plt.show()函数来显示最终的折线面积图。

八、热力图

  为了更直观地绘制热力图,通常会使用seaborn库,它是基于matplotlib的一个更高级的统计绘图库。下面是一个使用seaborn绘制热力图的示例代码:

  首先,确保你已经安装了seaborn库。如果没有安装,可以使用pip进行安装:

pip install seaborn

  然后,你可以使用以下代码来绘制热力图:

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

# 创建一个随机数据矩阵
data = np.random.rand(10, 12)

# 创建一个热力图
heatmap = sns.heatmap(data, cmap='coolwarm', annot=True, fmt=".2f")

# 设置X轴和Y轴的标签
heatmap.set_xticklabels(range(1, 13))  # 设置X轴刻度标签
heatmap.set_yticklabels(range(1, 11))  # 设置Y轴刻度标签

# 设置图表的标题
plt.title('Heatmap Example')

# 显示图表
plt.show()

在这里插入图片描述

  在这个例子中,我们首先导入了所需的库,然后创建了一个10x12的随机数据矩阵。接着,我们使用sns.heatmap函数来绘制热力图,其中data参数是我们要展示的数据,cmap参数定义了颜色映射(这里使用了’coolwarm’),annot=True表示在每个格子中显示数据值,fmt=".2f"定义了数值的格式。最后,我们设置了X轴和Y轴的刻度标签,并为图表添加了标题。

  如果你坚持使用matplotlib而不使用seaborn,你也可以通过绘制一系列带颜色的矩形来手动创建热力图,但这将比使用seaborn更加复杂。因此,推荐使用seaborn来绘制热力图,因为它提供了更简洁、更高级的接口。

  后面将继续介绍seaborn绘图库;因为seaborn并是一个绘图库,它与DataFrame对象有很好的集成。

九、折线图多功能的封装图
  下面封装的ineChartPlotter类,是为绘制不同种类的折线图,有draw_line_chart、draw_line_ndims_one_dim和draw_nline_chart方法,具体的作用参看图片即可了解;

import matplotlib.pyplot as plt  
import pandas as pd  
import numpy as np

from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体:解决plot不能显示中文问题
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题

class LineChartPlotter:  
    def __init__(self):  
        self.fig = None  
        self.ax = None  
  
    def draw_line_chart(self, x, y, marker='o', label='工业', xlabel='Time', ylabel='Flow (累计进水流量)', title='南部污水厂累计进水流量(JSLL1/LJLL)'):  
        """在图上绘制一条折线图"""  
        self.fig, self.ax = plt.subplots()  
        self.ax.plot(x, y, marker=marker, label=label)  
        self.ax.set_xlabel(xlabel)  
        self.ax.set_ylabel(ylabel)  
        self.ax.legend()  
        self.ax.set_title(title)  
        self.ax.grid(True)  
        plt.show()  
  
    def draw_line_ndims_one_dim(self, data, xlabel='time', n=None, title='趋势对比图'):  
        """绘制一个n*1行的一个折线图,共用一个坐标轴"""  
        if n is None:  
            n = data.shape[1] - 1  
        self.fig, axs = plt.subplots(n, 1, figsize=(10, 15), sharex=True)  
        colors = plt.cm.viridis(np.linspace(0, 1, n))  
        for i, col in enumerate(data.columns[1:]):  
            if col != xlabel:  
                axs[i].plot(data[xlabel], data[col], color=colors[i], label=col)  
                axs[i].set_ylabel(f'({col})')  
                axs[i].legend()  
        axs[-1].set_xlabel('Time')  
        plt.tight_layout()  
        self.fig.suptitle(title)  
        plt.show()  
  
    def draw_nline_chart(self, data, xlabel='time', y_label='Flow', title='趋势对比图'):  
        """这一个图上绘制多个曲线的折线图"""  
        self.fig, self.ax = plt.subplots(figsize=(10, 5))  
        for column in data.columns[1:]:  
            self.ax.plot(data[xlabel], data[column], label=column)  
        self.ax.set_xlabel(xlabel)  
        self.ax.set_ylabel(y_label)  
        self.ax.set_title(title)  
        self.ax.legend()  
        max_flow = data[data.columns[1:]].max().max()  
        self.ax.set_ylim(0, max_flow)  
        self.ax.grid(True)  
        plt.show()  
    
# 使用示例  
if __name__ == "__main__":  
    # 假设我们有一个DataFrame,包含时间和多个流量序列  
    data = pd.DataFrame({  
        'time': pd.date_range(start='2023-01-01', periods=100, freq='D'),  
        'flow1': np.random.rand(100),  
        'flow2': np.random.rand(100),  
        'flow3': np.random.rand(100)  
    })  
  
    # 创建绘图对象  
    plotter = LineChartPlotter()  
  
    # 绘制单个折线图  
    # plotter.draw_line_chart(data['time'], data['flow1'], label='Flow 1')  
  
    # # 绘制多个子图的折线图  
    # plotter.draw_line_ndims_one_dim(data)  
  
    # # 绘制单个图上的多个折线图  
    # plotter.draw_nline_chart(data)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  总之matplotlib是Python中一个功能强大的数据可视化库,它提供了丰富的绘图接口,可以帮助用户快速创建各种高质量的图形,如折线图、直方图、饼图、散点图、柱状图等。以下是使用matplotlib进行数据可视化的几个关键总结和优势:

  • 多样化的图形支持:
      matplotlib支持绘制各种常见的统计图形,包括折线图、柱状图、散点图等,也支持更复杂的图形,如热力图、等高线图等。这使得matplotlib能够应对各种数据分析和可视化的需求。

  • 高度可定制性:
      matplotlib提供了大量的参数和选项,用户可以根据需要自定义图形的各个方面,包括颜色、线条样式、字体、图例等。这使得用户能够根据自己的需求和审美创建出独一无二的图形。

  • 易于集成:
      matplotlib可以与Python中的其他库(如NumPy、Pandas等)无缝集成,使得数据预处理、数据分析和数据可视化可以在同一个环境中进行。这大大提高了数据分析和可视化的效率。

  • 交互式图形:
      matplotlib支持创建交互式图形,用户可以通过鼠标和键盘与图形进行交互,如缩放、平移、选择数据点等。这使得用户能够更深入地探索和分析数据。

  • 丰富的文档和社区支持:
      matplotlib拥有完善的文档和活跃的社区支持,用户可以通过官方文档、教程、示例代码以及社区论坛等途径获取帮助和解答问题。这使得学习和使用matplotlib变得更加容易。

  • 高质量的输出:
      matplotlib可以生成高质量的图形输出,支持多种文件格式(如PNG、PDF、SVG等),可以满足不同场景下的需求。同时,matplotlib还支持在图形中嵌入LaTeX数学公式,使得图形更具专业性和可读性。

  • 跨平台兼容性:
      matplotlib具有良好的跨平台兼容性,可以在Windows、Linux和Mac OS等操作系统上运行。这使得用户可以在不同的平台上使用matplotlib进行数据可视化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587768.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】——类和对象(初始列表,Static成员,友元)

创作不易&#xff0c;多多支持&#xff01; &#xff01;&#x1f618;&#x1f618; 前言 因为前面的构造函数还有些地方不够清晰&#xff0c;所以这里需要再继续补充一些 一 初始化列表 1.1认识初始化 对于默认的构造函数来说&#xff0c;我们都知道它是起到了初始化的…

3-4STM32C8T6按键控制LED开与关

实物接线如下&#xff1a; 为了代码的简洁性&#xff0c;这里需要对LED与KEY进行封装如下&#xff1a; #include "stm32f10x.h" // Device headervoid LED_Init(void) {RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GP…

WSL2-Ubuntu使用Conda配置百度飞浆paddlepaddle虚拟环境

0x00 缘起 本文将介绍在WSL2-Ubuntu系统中,使用Conda配置百度飞浆paddlepaddle虚拟环境中所出现的各种问题以及解决方法,最终运行"run_check()"通过测试。 在WSL2中配置paddlepaddle不像配置Pytorch那样顺滑,会出现各种问题(如:库的文件缺失、不知道如何匹配C…

工厂模式和策略模式区别

工厂模式和策略模式都是面向对象设计模式&#xff0c;但它们的目的和应用场景有所不同。 工厂模式是一种创建型设计模式&#xff0c;旨在通过使用一个工厂类来创建对象&#xff0c;而不是直接使用new关键字来创建对象。这样做可以使系统更容易扩展和维护&#xff0c;因为新的对…

模型智能体开发之metagpt-单智能体实践

需求分析 根据诉求完成函数代码的编写&#xff0c;并实现测试case&#xff0c;输出代码 代码实现 定义写代码的action action是动作的逻辑抽象&#xff0c;通过将预设的prompt传入llm&#xff0c;来获取输出&#xff0c;并对输出进行格式化 具体的实现如下 定义prompt模版 …

Cisco IOS XE Web UI 权限提升漏洞复现(CVE-2023-20198)

0x01 产品简介 Web UI 是一种基于GUI的嵌入式系统管理工具,能够提供系统配置、简化系统部署和可管理性以及增强用户体验。它带有默认映像,因此无需在系统上启用任何内容或安装任何许可证。Web UI 可用于构建配置以及监控系统和排除系统故障,而无需CLI专业知识。 0x02 漏洞…

redis 高可用 Sentinel 详解

写在前面 redis 在我们日常的业务开发中是十分常见的&#xff0c;而redis的可用性就必须要有很高的要求&#xff0c;那么 redis集群的高可用由有一个或者多个 Sentinel(哨兵) 实例组成的 哨兵系统来保证的。 哨兵 由一个或者多个 Sentinel 实例组成的 Sentinel 系统可以监控任…

Java项目:基于SSM框架实现的高校专业信息管理系统设计与实现(ssm+B/S架构+源码+数据库+毕业论文+PPT+开题报告)

一、项目简介 本项目是一套基于SSM框架实现的高校专业信息管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、…

Python3.11修改并运行oneforall

遇到的问题 使用python3.11默认无法运行oneforall脚本&#xff0c;出现如下报错 # 解决方案 修改 /usr/local/lib/python3.11/dist-packages/exrex.py exrex.py具体文件路径报错中会显示 vim /usr/local/lib/python3.11/dist-packages/exrex.py# 修改前 from re import sre…

基于Hyperf的CMS,企业官网通用php-swoole后台管理系统

2023年9月11日10:47:00 仓库地址&#xff1a; https://gitee.com/open-php/zx-hyperf-cms CMS&#xff0c;企业官网通用PHP后台管理系统 框架介绍 hyperf SCUI 后端开发组件 php 8.1 hyperf 3.1 数据库 sql(使用最新日期文件) hyperf\doc\sql_bak mysql 8. 系统默认账号…

微软如何打造数字零售力航母系列科普05 - Azure中计算机视觉的视觉指南

Azure中计算机视觉的视觉指南 什么是计算机视觉&#xff1f;如何使用Microsoft Azure将计算机视觉功能集成到应用程序和工作流中&#xff1f; 作者&#xff1a;Nitya Narasimhan 编辑&#xff1a;数字化营销工兵 •11分钟阅读 什么是计算机视觉&#xff1f;如何使用Microso…

最快成型的前端框架Layuimini本地项目部署演示

最快成型的前端框架Layuimini本地项目部署演示 本篇以LayuiMini-v2在线页面预览为例 点击上述链接跳转页面 1. 准备工作 环境准备 WindowsNginxWeb项目资源包&#xff08;Layuimini-v2&#xff09; 2. 页面加载 拉取到本地后直接访问时会出现如下弹窗&#xff0c;无法加载页…

LeetCode LCR 179. 和为s的两个数字

原题链接&#xff1a;LCR 179. 查找总价格为目标值的两个商品 - 力扣&#xff08;LeetCode&#xff09; 题目的意思&#xff1a;通过给定的数组&#xff0c;找出两个值&#xff0c;相加并等于目标值。 第一种思路&#xff0c;暴力枚举&#xff0c;伪代码如下&#xff1a; for (…

暴雨服务器引领信创算力新潮流

去年大模型的空前发展&#xff0c;人工智能也终于迎来了属于自己的“文艺复兴”&#xff0c;众多的模型相继发布&#xff0c;继而催生了整个行业对于智能算力需求的激增。 市场需求与技术驱动仿佛现实世界的左右脚&#xff0c;催动着世界文明的齿轮向前滚动。在全球经济角逐日…

【计算机网络】FTP站点配置搭建教程以及相关问题解决方案(超详细)

文章目录 1、安装Window Server 20082、搭建FTP环境&#xff08;1&#xff09;安装FTP服务器&#xff08;2&#xff09;配置FTP服务器&#xff08;3&#xff09;测试FTP连接 3、遇到的问题以及解决方案&#xff08;1&#xff09;Windows无法访问此文件夹&#xff08;2&#xff…

如何将安卓手机投屏到Windows 10电脑上

诸神缄默不语-个人CSDN博文目录 我之所以要干这个事是为了用手机直播的时候在电脑上看弹幕…… 文章目录 1. 方法一&#xff1a;直接用Win10内置的投影到此电脑2. 方法二&#xff1a;用AirDroid Cast投屏到电脑上 1. 方法一&#xff1a;直接用Win10内置的投影到此电脑 在设置…

抓取应用程序sql语句

一、利用tcpdump和wireshark 抓包方法 1、下载安装wireshark&#xff08;windows用&#xff09; 注&#xff1a;可以用wireshark 抓包和分析包 https://www.wireshark.org/ 2、安装tcpdump&#xff08;linux用&#xff09; yum install tcpdump -y3、在数据库服务器上抓数据…

java-链表排序

需求 思路 排序&#xff1a;讲所有的值都取出来&#xff0c;存储到ArrayList中&#xff0c;然后排序&#xff0c;将排序之后的元素依次使用add方法添加到自定义链表合并排序&#xff1a;先合并&#xff0c;然后调用刚才写的排序算法合并&#xff1a;将表一的头结点作为新链表的…

CUDA内存模型

核函数性能并不只与线程束的执行有关。 CUDA内存模型概述 GPU和CPU内存模型的主要区别是&#xff0c;CUDA编程模型能将内存层次结构更好地呈现给用户&#xff0c;能让我们显示的控制它的行为。 对程序员来说&#xff0c;一般有两种类型的存储器&#xff1a; 可编程的&#x…

【docker 】 IDEA 安装 Docker 工具

打开File->Settings->Plugins 配置 Docker 的远程访问连接 Engine APIURL &#xff1a;tcp://192.168.0.1:2375 &#xff08;换成自己的docker开放端口&#xff09; 使用diea的docker插件 查看已有的镜像 创建一个容器 下面是最近更新的文章&#xff1a; 【docker 】 …