模型智能体开发之metagpt-单智能体实践

需求分析

  1. 根据诉求完成函数代码的编写,并实现测试case,输出代码

代码实现

定义写代码的action

  1. action是动作的逻辑抽象,通过将预设的prompt传入llm,来获取输出,并对输出进行格式化

  2. 具体的实现如下

    1. 定义prompt模版

      1. prompt是传给llm的入参,所以llm对prompt的需求解析越准确,那么llm的输出就会越符合我们的诉求
      2. 如何抽象出最合适的prompt模版
      PROMPT_TEMPLATE = """
          Write a python function that can {instruction} and provide two runnnable test cases.
          Return ```python your_code_here ```with NO other texts,
          your code:
          """
      
    2. 调用llm生成代码

      1. 通过传入的instruction参数来格式化llm入参,之后通过aask调用llm进行输出。因为llm的输出是并不一定会符合我们的诉求,所以需要按照需求对output进行格式化
      async def run(self, instruction: str):
         prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)
      	 rsp = await self._aask(prompt)
      	 code_text = SimpleWriteCode.parse_code(rsp)
      	 return code_text  
      
    3. 对llm output进行格式化

      1. 正则表达式提取其中的code部分,llm在返回给我们代码时通常带有一些格式化标识,而这些格式化标识往往是我们所不需要的
      2. 格式方法:
       @staticmethod
          def parse_code(rsp):
              pattern = r'```python(.*)```'
              match = re.search(pattern, rsp, re.DOTALL)
              code_text = match.group(1) if match else rsp
              return code_text
      
  3. 完整代码

    import asyncio
    import re
    import subprocess
    
    import fire
    
    from metagpt.actions import Action
    from metagpt.logs import logger
    from metagpt.roles.role import Role, RoleReactMode
    from metagpt.schema import Message
    
    class SimpleWriteCode(Action):
        PROMPT_TEMPLATE: str = """
        Write a python function that can {instruction} and provide two runnnable test cases.
        Return ```python your_code_here ```with NO other texts,
        your code:
        """
    
        name: str = "SimpleWriteCode"
    
        async def run(self, instruction: str):
            prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)
    
            rsp = await self._aask(prompt)
    
            code_text = SimpleWriteCode.parse_code(rsp)
    
            return code_text
    
        @staticmethod
        def parse_code(rsp):
            pattern = r"```python(.*)```"
            match = re.search(pattern, rsp, re.DOTALL)
            code_text = match.group(1) if match else rsp
            return code_text
    

创建一个role

  1. 初始化上下文

    class SimpleCoder(Role):
        name: str = "Alice"
        profile: str = "SimpleCoder"
    
        def __init__(self, **kwargs):
            super().__init__(**kwargs)
            self.set_actions([SimpleWriteCode])
    
    1. 可以看到创建了一个名为SimpleCoder的类,继承了Role,标明当前类是一个role的定位
    2. 其中name指定了当前role的名称
    3. 其中name指定了当前role的类型
    4. 然后我们重写了__init__方法,
    5. 绑定要执行的action是SimpleWriteCode,这个Action 能根据我们的需求生成我们期望的代码,定义的行动SimpleWriteCode会被加入到代办self._rc.todo中,
  2. 定义执行规则

    async def _act(self) -> Message:
     logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")
     todo = self.rc.todo  # todo will be SimpleWriteCode()
     msg = self.get_memories(k=1)[0]  # find the most recent messages
     code_text = await todo.run(msg.content)
     msg = Message(content=code_text, role=self.profile, cause_by=type(todo))
     	return msg 
    
    1. 重写_act,编写智能体具体的行动逻辑
    2. self.rc.todo:待办事项
    3. self.get_memories(k=1)[0]:获取最新的一条memory,即本次case里面的用户下达的指令
      1. 在本次的case里面,当用户输出instruction的时候,role需要把instruction传递给action,这里就涉及到了user如何传递消息给agent的部分,是通过memory来传递的
      2. memory作为agent的记忆合集,当role在进行初始化的时候,role就会初始化一个memory对象来作为self._rc.memory属性,在之后的_observe中存储每一个message,以便后续的检索,所以也可以理解role的memory就是一个含有message的list
      3. 当需要获取memory(llm的对话context)的时候,就可以使用get_memories(self, k=0) -> list[Message] 方法
    4. todo.run(msg.content):使用待办事项来处理最新一条memory
    5. Message:作为metagpt里面统一的消息处理格式
  3. 完整代码

        class SimpleCoder(Role):
            name: str = "Alice"
            profile: str = "SimpleCoder"
        
            def __init__(self, **kwargs):
                super().__init__(**kwargs)
                self.set_actions([SimpleWriteCode])
        
            async def _act(self) -> Message:
                logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")
                todo = self.rc.todo  # todo will be SimpleWriteCode()
        
                msg = self.get_memories(k=1)[0]  # find the most recent messages
                code_text = await todo.run(msg.content)
                msg = Message(content=code_text, role=self.profile, cause_by=type(todo))
        
                return msg
        ```
        
    
  4. 测试demo

    1. 代码

      async def main():
          msg = "write a function that calculates the sum of a list"
          role = SimpleCoder()
          logger.info(msg)
          result = await role.run(msg)
          logger.info(result)
      
      asyncio.run(main())
      
    2. 运行

      1. 如下图,role alice 关联到了action,并且action调用了llm,获取到的llm输出是一条代码。注意,代码格式有python格式化标识,所以在代码实现层面我们通过parse_code方法去掉了python的格式化标识。
      2. llm输出分为两部分,一部分是方法,另外一部分是测试case
        在这里插入图片描述

demo如果想正常运行的话,需要调用llm的key,环境配置可以参照 metagpt环境配置参考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587759.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Cisco IOS XE Web UI 权限提升漏洞复现(CVE-2023-20198)

0x01 产品简介 Web UI 是一种基于GUI的嵌入式系统管理工具,能够提供系统配置、简化系统部署和可管理性以及增强用户体验。它带有默认映像,因此无需在系统上启用任何内容或安装任何许可证。Web UI 可用于构建配置以及监控系统和排除系统故障,而无需CLI专业知识。 0x02 漏洞…

redis 高可用 Sentinel 详解

写在前面 redis 在我们日常的业务开发中是十分常见的,而redis的可用性就必须要有很高的要求,那么 redis集群的高可用由有一个或者多个 Sentinel(哨兵) 实例组成的 哨兵系统来保证的。 哨兵 由一个或者多个 Sentinel 实例组成的 Sentinel 系统可以监控任…

Java项目:基于SSM框架实现的高校专业信息管理系统设计与实现(ssm+B/S架构+源码+数据库+毕业论文+PPT+开题报告)

一、项目简介 本项目是一套基于SSM框架实现的高校专业信息管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、…

Python3.11修改并运行oneforall

遇到的问题 使用python3.11默认无法运行oneforall脚本,出现如下报错 # 解决方案 修改 /usr/local/lib/python3.11/dist-packages/exrex.py exrex.py具体文件路径报错中会显示 vim /usr/local/lib/python3.11/dist-packages/exrex.py# 修改前 from re import sre…

基于Hyperf的CMS,企业官网通用php-swoole后台管理系统

2023年9月11日10:47:00 仓库地址: https://gitee.com/open-php/zx-hyperf-cms CMS,企业官网通用PHP后台管理系统 框架介绍 hyperf SCUI 后端开发组件 php 8.1 hyperf 3.1 数据库 sql(使用最新日期文件) hyperf\doc\sql_bak mysql 8. 系统默认账号…

微软如何打造数字零售力航母系列科普05 - Azure中计算机视觉的视觉指南

Azure中计算机视觉的视觉指南 什么是计算机视觉?如何使用Microsoft Azure将计算机视觉功能集成到应用程序和工作流中? 作者:Nitya Narasimhan 编辑:数字化营销工兵 •11分钟阅读 什么是计算机视觉?如何使用Microso…

最快成型的前端框架Layuimini本地项目部署演示

最快成型的前端框架Layuimini本地项目部署演示 本篇以LayuiMini-v2在线页面预览为例 点击上述链接跳转页面 1. 准备工作 环境准备 WindowsNginxWeb项目资源包(Layuimini-v2) 2. 页面加载 拉取到本地后直接访问时会出现如下弹窗,无法加载页…

LeetCode LCR 179. 和为s的两个数字

原题链接:LCR 179. 查找总价格为目标值的两个商品 - 力扣(LeetCode) 题目的意思:通过给定的数组,找出两个值,相加并等于目标值。 第一种思路,暴力枚举,伪代码如下: for (…

暴雨服务器引领信创算力新潮流

去年大模型的空前发展,人工智能也终于迎来了属于自己的“文艺复兴”,众多的模型相继发布,继而催生了整个行业对于智能算力需求的激增。 市场需求与技术驱动仿佛现实世界的左右脚,催动着世界文明的齿轮向前滚动。在全球经济角逐日…

【计算机网络】FTP站点配置搭建教程以及相关问题解决方案(超详细)

文章目录 1、安装Window Server 20082、搭建FTP环境(1)安装FTP服务器(2)配置FTP服务器(3)测试FTP连接 3、遇到的问题以及解决方案(1)Windows无法访问此文件夹(2&#xff…

如何将安卓手机投屏到Windows 10电脑上

诸神缄默不语-个人CSDN博文目录 我之所以要干这个事是为了用手机直播的时候在电脑上看弹幕…… 文章目录 1. 方法一:直接用Win10内置的投影到此电脑2. 方法二:用AirDroid Cast投屏到电脑上 1. 方法一:直接用Win10内置的投影到此电脑 在设置…

抓取应用程序sql语句

一、利用tcpdump和wireshark 抓包方法 1、下载安装wireshark(windows用) 注:可以用wireshark 抓包和分析包 https://www.wireshark.org/ 2、安装tcpdump(linux用) yum install tcpdump -y3、在数据库服务器上抓数据…

java-链表排序

需求 思路 排序:讲所有的值都取出来,存储到ArrayList中,然后排序,将排序之后的元素依次使用add方法添加到自定义链表合并排序:先合并,然后调用刚才写的排序算法合并:将表一的头结点作为新链表的…

CUDA内存模型

核函数性能并不只与线程束的执行有关。 CUDA内存模型概述 GPU和CPU内存模型的主要区别是,CUDA编程模型能将内存层次结构更好地呈现给用户,能让我们显示的控制它的行为。 对程序员来说,一般有两种类型的存储器: 可编程的&#x…

【docker 】 IDEA 安装 Docker 工具

打开File->Settings->Plugins 配置 Docker 的远程访问连接 Engine APIURL :tcp://192.168.0.1:2375 (换成自己的docker开放端口) 使用diea的docker插件 查看已有的镜像 创建一个容器 下面是最近更新的文章: 【docker 】 …

异地组网,让“远程运维”更简单

您是否在联网场景中有过这些需求? 摄像头需要联网统一监控、PLC需要联网告别本地升级、工控机需要联网告别本地配置、广告屏需要联网告别本地下载视频、远程打开终端设备WEB进行配置......这些问题有人新升级的“异地组网”功能统统可以解决! 告别繁琐…

C++ 之CMake代码编译

1、编译过程 预处理-Pre-Processing //.i文件 # -E 选项指示编译器仅对输入文件进行预处理 g -E test.cpp -o test.i //.i文件 编译-Compiling // .s文件 # -S 编译选项告诉 g 在为 C 代码产生了汇编语言文件后停止编译 # g 产生的汇编语言文件的缺省扩展名是 .s g -S test…

LNMP部署及应用(Linux+Nginx+MySQL+PHP)

LNMP 我们为什么采用LNMP这种架构? 采用Linux、PHP、MySQL的优点我们不必多说。 Nginx是一个小巧而高效的Linux下的Web服务器软件,是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,已经在一些俄罗斯的大型网站上运行多年,目…

QT程序通过GPIB-USB-HS转接线控制数字万用表

1、硬件准备 1.1、数字万用表 型号 :Agilent 34401A 前面图示: 后面图示:有GPIB接口 1.2、GPIB-USB-HS转接线 2、GPIB协议基础了解 2.1、引脚 8条数据线:DIO1 ~ DIO8 5条管理线:IFC、ATN、REN、EOI、SRQ 3条交握线…

冯喜运:5.2原油三连跌引发连锁反应,黄金市场拐点已至?

【黄金消息面分析】:4月ADP就业数据的强劲表现,为美联储的货币政策提供了新的挑战。在这一背景下,黄金市场的反应尤为值得关注。本文将深入探讨美国就业数据对美联储决策的影响,以及这些决策如何影响黄金市场的未来走向。通胀与就…