文心一言 VS 讯飞星火 VS chatgpt (249)-- 算法导论18.2 2题

二、请解释在什么情况下(如果有的话),在调用 B-TREE-INSERT 的过程中,会执行冗余的 DISK-READ 或 DISK-WRITE 操作。(所谓冗余的 DISK-READ ,是指对已经在主存中的某页做 DISK-READ 。冗余的 DISK-WRITE 是指将已经存在于磁盘上的某页又完全相同地重写一遍。)。如果要写代码,请用go语言。

文心一言:

在B树(B-Tree)中,当我们进行插入操作时(例如B-TREE-INSERT),我们可能会遇到磁盘I/O操作,这些操作包括DISK-READ(从磁盘读取数据到内存)和DISK-WRITE(将内存中的数据写回到磁盘)。然而,如果我们能够优化我们的数据结构和算法,我们就可以减少冗余的I/O操作。

冗余的DISK-READ通常发生在以下情况:

缓存失效:如果B树的某个节点页(或称为“块”)已经被加载到内存中(例如在缓存中),但由于某种原因(如内存压力导致缓存被清除),我们再次尝试从磁盘中读取它。
不必要的查找:在插入过程中,如果我们不正确地跟踪节点在内存中的位置,或者使用了过时的引用,我们可能会错误地认为节点不在内存中,从而触发DISK-READ。
冗余的DISK-WRITE可能发生在以下情况:

重复写入:如果我们在内存中修改了节点,但在将其写回磁盘之前,我们没有检查磁盘上的版本是否已经被其他操作更新。
写回策略问题:如果我们的写回策略过于简单(例如,总是写回修改过的节点),而没有考虑是否实际发生了更改,那么即使节点没有变化,我们也可能会将其写回磁盘。
为了优化并减少冗余的I/O操作,我们可以采取以下策略:

使用缓存:跟踪哪些节点页当前在内存中,并在需要时重用它们,而不是重新从磁盘中读取。
写前日志(Write-Ahead Logging, WAL):在将更改应用到B树之前,先将其记录到日志中。这样,如果系统崩溃,我们可以使用日志来恢复B树到一致的状态。WAL还可以帮助减少不必要的DISK-WRITE,因为我们可以仅当日志条目累积到一定程度时才将更改合并到B树中。
延迟写(Delayed Writes):将多个更改组合成一个DISK-WRITE操作,而不是为每个更改都进行写操作。这可以通过批处理或使用某种形式的合并策略来实现。
下面是一个简化的Go语言伪代码示例,展示了如何使用缓存来减少冗余的DISK-READ:

type BTreeNodeCache struct {  
    // 假设我们使用map来模拟缓存,其中键是节点页的唯一标识符,值是节点页的指针  
    cache map[int]*BTreeNode  
}  
  
func (cache *BTreeNodeCache) GetNode(pageID int) (*BTreeNode, bool) {  
    // 尝试从缓存中获取节点  
    if node, ok := cache.cache[pageID]; ok {  
        return node, true  
    }  
    // 如果节点不在缓存中,则进行DISK-READ  
    // 这里只是伪代码,实际的DISK-READ操作会涉及磁盘I/O  
    node := DiskRead(pageID)  
    if node != nil {  
        // 将节点添加到缓存中  
        cache.cache[pageID] = node  
    }  
    return node, false // 第二个返回值表示是否从缓存中获取  
}  
  
// 假设的B-TREE-INSERT函数,使用BTreeNodeCache来减少冗余的DISK-READ  
func BTreeInsert(root *BTreeNode, key interface{}, value interface{}, cache *BTreeNodeCache) {  
    // ... 省略其他代码 ...  
  
    // 当需要访问子节点时,使用缓存  
    childNode, fromCache := cache.GetNode(childNodePageID)  
    if !fromCache {  
        // 如果节点不在缓存中,进行必要的初始化或进一步处理  
    }  
  
    // ... 省略插入逻辑 ...  
  
    // 在插入后,可能需要更新父节点或执行分裂等操作  
    // 这些操作也可能需要访问其他节点,同样可以使用缓存  
  
    // ... 省略其他代码 ...  
}

请注意,这只是一个简化的示例,并没有涉及DISK-WRITE的优化或具体的B树实现细节。在实际应用中,还需要考虑更多复杂的场景和优化策略。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

讯飞星火:

在B-TREE-INSERT过程中,可能会执行冗余的DISK-READ或DISK-WRITE操作的情况是:当需要分裂节点时,如果磁盘上的空闲页不足以容纳新插入的键值对,那么就需要将已有的节点数据进行移动以腾出空间。在这个过程中,可能会出现冗余的DISK-READ和DISK-WRITE操作。

以下是一个简单的Go语言实现:

package main

import (
	"fmt"
)

type Node struct {
	Keys  []int
	Child []*Node
}

func BTreeInsert(root **Node, key int) {
	if *root == nil {
		*root = &Node{Keys: []int{key}, Child: make([]*Node, 2)}
		return
	}

	node := *root
	i := len(node.Keys) - 1
	for i >= 0 && key < node.Keys[i] {
		i--
	}

	if node.Child[i+1] != nil {
		BTreeInsert(&node.Child[i+1], key)
	} else {
		node.Keys = append(node.Keys[:i+1], key)
		node.Child = append(node.Child[:i+2], nil)
	}

	if len(node.Keys) > 2 {
		splitNode(root, node)
	}
}

func splitNode(parent **Node, node *Node) {
	mid := len(node.Keys) / 2
	newNode := &Node{Keys: node.Keys[mid:], Child: node.Child[mid+1:]}
	node.Keys = node.Keys[:mid]
	node.Child = node.Child[:mid+1]

	if parent == nil {
		*parent = &Node{Keys: []int{newNode.Keys[0]}, Child: []*Node{node, newNode}}
	} else {
		i := len(*parent).Keys - 1
		for i >= 0 && newNode.Keys[0] < (*parent).Keys[i] {
			i--
		}
		(*parent).Keys = append((*parent).Keys[:i+1], newNode.Keys[0])
		(*parent).Child = append((*parent).Child[:i+2], nil)
		(*parent).Child[i+2] = newNode
	}
}

func main() {
	var root *Node
	keys := []int{10, 20, 30, 40, 50, 60, 70, 80, 90}
	for _, key := range keys {
		BTreeInsert(&root, key)
	}
	fmt.Println("Root:", root)
}

在这个实现中,BTreeInsert函数用于向B树中插入一个键值对。当需要分裂节点时,会调用splitNode函数来处理。在这个过程中,可能会出现冗余的DISK-READ和DISK-WRITE操作。

360智脑:

在B-树插入过程中,可能会出现冗余的磁盘读取(DISK-READ)或磁盘写入(DISK-WRITE)操作,当节点在磁盘和主存之间移动时,或者在更新磁盘上的节点时可能发生。这些情况通常与缓存失效和页面置换算法有关。

例如,假设我们有一个B-树存储在磁盘上,并且操作系统使用某种页面缓存来减少磁盘访问次数。当我们需要读取或写入一个节点时,操作系统首先检查该节点是否在缓存中。如果在缓存中,则可以直接读取或写入,避免了实际的磁盘操作。但是,如果缓存满了,新的页面进来时可能就会替换掉一些已经在缓存中的页面。这时,如果被替换的页面恰好是我们之后还需要用到的,那么下次再访问这个页面时,就不得不从磁盘重新读取,造成了冗余的磁盘读取。

同样地,如果我们写入了一个已经在缓存中的节点,然后这个节点因为某些原因被换出到磁盘,之后我们又需要写回这个节点,可能会造成冗余的磁盘写入。

这种情况的发生依赖于具体的缓存管理和页面置换策略,以及B-树操作的具体实现。在实际应用中,往往通过优化缓存利用和减少不必要的数据结构修改来尽量避免这种冗余操作。

由于这个问题比较抽象,并且与具体的操作系统和存储系统的实现细节高度相关,因此很难提供一个具体的Go语言代码示例。解决这类问题通常需要在系统层面进行优化,比如通过调整缓存大小、页面置换算法,或者通过批量操作来减少单个磁盘访问的频率。

在这里插入图片描述

智谱清言:

B树是一种自平衡的树,它维护了数据的有序分布,并允许在对数时间内进行查找、顺序访问、插入和删除的操作。B树插入操作中是否执行冗余的磁盘读写(DISK-READ 或 DISK-WRITE),主要取决于B树的实现方式和操作系统如何管理内存与磁盘之间的数据同步。

一般来说,B树节点通常会保存在内存中,而B树节点的数据条目可能分布在多个磁盘页上。在插入操作中,如果插入的键值对已经存在于某个磁盘页中,而该磁盘页尚未被加载到内存中,那么首先会执行一个磁盘读操作(DISK-READ)将该页加载到内存中,然后进行插入。如果该页已经在内存中,则不会执行磁盘读操作。

在多数情况下,冗余的磁盘写操作(DISK-WRITE)是在以下几种情况中发生的:

1.节点分裂:当一个节点因为插入新元素而变得过于满(超过B树的最小填充因子),这个节点需要分裂成两个节点。这时,分裂后的两个新节点需要被写回磁盘。

2.页替换:在节点分裂后,可能会导致父节点的空间不足,需要进行页替换或树的增长。这可能涉及到将修改后的父节点写回磁盘。

3.页更新:即使节点没有分裂,插入操作也可能导致某些内部节点的键值范围或指针需要更新,如果这些页面不在内存中,也需要写回磁盘。

以下是一个用Go语言编写的简化B树插入操作的例子。这个例子并没有处理磁盘读写操作,因为它取决于特定的磁盘IO框架和B树的实现细节:

package main
import (
	"fmt"
)
type BTreeNode struct {
	keys  []int
	pages []*BTreeNode
}
type BTree struct {
	root *BTreeNode
	t   int // 树的最大度数
}
func (t *BTree) insert(k int, node *BTreeNode) bool {
	// 查找合适的插入位置
	i := len(node.keys) - 1
	for i >= 0 && k < node.keys[i] {
		i--
	}
	i++
	// 如果是根节点,且键的数量超过t,则分裂或创建新根
	if node == t.root && len(node.keys) > 2*t {
		t.splitRoot()
		return t.insert(k, t.root)
	}
	// 插入键值对
	node.keys = append(node.keys[:i], append([]int{k}, node.keys[i:]...)...)
	// 检查是否需要分裂节点
	if len(node.keys) > 2*t {
		t.split(node)
	}
	return true
}
func (t *BTree) splitRoot() {
	newRoot := &BTreeNode{keys: []int{t.root.keys[t.t-1]}}
	newRoot.pages = []*BTreeNode{t.root, t.root.pages[t.t-1]}
	t.root = newRoot
	t.root.pages[0].keys = t.root.keys[t.t-1:]
	t.root.pages[1].keys = t.root.pages[0].keys[:t.t-1]
	// 更新页的指针等操作...
}
func (t *BTree) split(x *BTreeNode) {
	// 分裂节点的逻辑...
	// 涉及到键的重新分配和页的创建
}
func main() {
	t := &BTree{t: 3}
	keys := []int{10, 20, 5, 6, 12, 30, 7, 17}
	for _, k := range keys {
		t.insert(k, t.root)
	}
	fmt.Println("Root keys:", t.root.keys)
}

在实际的B树实现中,磁盘读写操作通常是由底层的磁盘存储系统来管理的,应用程序通常不会直接进行磁盘操作。操作系统会提供文件系统的API来处理文件的读写,而B树的数据结构会使用这些API来保证数据的一致性和效率

天工:

在B树插入(B-Tree-INSERT)过程中可能出现的冗余磁盘读写操作通常与缓存和B树的结构有关。以下是一些可能导致冗余磁盘读写的情况:

  1. 脏页写回(Dirty Page Writeback):当一个节点(页)被修改后,它仍然保留在内存中直到某个时候被写回到磁盘上。如果插入操作触发了一个节点分裂,并且这个节点之前已经在内存中被修改过(即为“脏页”),那么在节点分裂之前可能需要先将其写回磁盘。

  2. 冗余磁盘读取(Redundant Disk Read):如果在插入过程中,需要访问一个已经在内存中的节点,但是由于某种原因(如页面回收机制)这个节点不在内存中,那么系统就必须从磁盘上重新读取它,即使它刚刚被写入过。

  3. 叶节点分裂(Leaf Split):在B树中插入一个新元素时,如果该元素位于叶节点,并且由于空间不足需要进行分裂,那么可能涉及到将一部分键和指向子节点的指针移动到新创建的叶节点。如果这个过程中,涉及到的节点之前是满的(没有空间进行插入),那么这些节点可能已经在内存的“脏页”缓存中等待写入磁盘。在这种情况下,系统可能需要先将这些“脏页”写回磁盘,然后才能继续分裂过程。

  4. 非叶节点分裂(Non-leaf Node Split):类似于叶节点分裂,如果插入发生在非叶节点并且该节点需要分裂,则可能需要将部分键和子节点指针移动到新节点。这个过程也可能涉及到先将相关的“脏页”写回磁盘。

在Go语言中实现B树并处理这些问题可能需要考虑操作系统的文件系统缓存(如Linux的页缓存)以及数据库管理系统(DBMS)通常使用的缓冲区池(Buffer Pool)管理策略。以下是一个简化的例子,展示了如何在Go中处理脏页和B树的插入:

package btree

import (
	"fmt"
	"os"
	"syscall"
)

// 模拟的B树节点
type BTreeNode struct {
	keys    []int // 键值集合
	children []*BTreeNode // 子节点
}

// 模拟的B树
type BTree struct {
	root     *BTreeNode
	nodeSize int // 每个节点的最大键值数
}

// 插入操作
func (bt *BTree) Insert(key int) {
	// 插入逻辑...

	// 如果根节点已满,需要进行分裂
	if bt.root.IsFull() {
		newRoot := &BTreeNode{
			keys:    make([]int, bt.nodeSize),
			children: make([]*BTreeNode, bt.nodeSize+1),
		}

		// 将根节点的内容复制到新根节点
		copy(newRoot.keys, bt.root.keys)
		copy(newRoot.children, bt.root.children)

		// 更新根节点
		bt.root = newRoot.children[0]
		newRoot.children[0] = newRoot.children[1]

		// 此处需要处理脏页写回逻辑
		// 例如,如果bt.root是脏页,则需要先将其写回磁盘
		// 这里仅为示例,实际情况下需要根据内存管理策略来实现
		if !bt.is干净() {
			fileDescriptor, err := os.OpenFile("./btree.dat", syscall.O_WRONLY|syscall.O_SYNC, 0666)
			if err != nil {
				panic(err)
			}
			defer fileDescriptor.Close()

			_, _ = fileDescriptor.WriteAt(bt.root.toBytes(), 0)
		}
	}
}

// 检查根节点是否为“脏页”
func (bt *BTree) is干净() bool {
	// 实际实现应依赖于文件系统和DBMS提供的API
	// 这里只是为了演示,假设我们可以通过检查文件的元数据来确定
	// 例如,通过fstatat或fstatfs系统调用来获取文件状态信息
	return true
}

func main() {
	// 创建B树实例并插入数据
	btree := BTree{}
	btree.Insert(10)
	btree.Insert(5)
	// ...更多插入操作
}

请注意,以上代码是一个高度简化的示例,仅用于说明可能的情况和概念。在实际的数据库系统或文件系统中,B树的实现将更加复杂,涉及到许多底层细节,包括但不限于内存管理、并发控制和磁盘I/O优化。特别是,对于脏页的处理和避免冗余的磁盘I/O,通常需要一个精心设计的缓冲区池(buffer pool)和提交日志(WAL,Write-Ahead Logging)系统。

灵小智:

在调用B-TREE-INSERT的过程中,可能会执行冗余的DISK-READ或DISK-WRITE操作的情况有两种:

  1. 插入的关键字已经存在于B树中。在B树的插入过程中,需要搜索目标关键字所在的叶子节点。如果目标关键字已经存在于B树中,那么在搜索到目标关键字的叶子节点时,会执行冗余的DISK-READ操作,即读取该页的内容以获取目标关键字的位置。

  2. 插入的关键字所在的页已经被装载到主存中。在B树的插入过程中,需要在叶子节点中插入新的关键字。如果该叶子节点的页已经被装载到主存中,则需要执行冗余的DISK-WRITE操作,即将该页完全相同地重写一遍。

下面是使用Go语言实现的示例代码:

// BTreeInsert 插入关键字到B树中
func BTreeInsert(tree *BTree, key int) {
    // 搜索插入位置
    leaf := searchLeafNode(tree.root, key)

    // 判断关键字是否已存在
    if leaf.hasKey(key) {
        return
    }

    // 插入关键字到叶子节点
    leaf.insert(key)

    // 判断叶子节点是否已经在主存中
    if leaf.inMemory {
        // 执行冗余的DISK-WRITE操作
        writeNodeToDisk(leaf)
    }
}

// searchLeafNode 搜索插入位置的叶子节点
func searchLeafNode(node *TreeNode, key int) *LeafNode {
    if node.isLeaf() {
        return node.(*LeafNode)
    }

    // 在内部节点中查找子节点
    for i := 0; i < node.numKeys; i++ {
        if key < node.keys[i] {
            return searchLeafNode(node.children[i], key)
        }
    }

    return searchLeafNode(node.children[node.numKeys], key)
}

// writeNodeToDisk 将节点数据写入磁盘
func writeNodeToDisk(node *Node) {
    // 写入磁盘操作
}

请注意,以上只是示例代码,并不完整且没有考虑各种边界情况。实际情况下,需要根据具体的B树实现和存储系统进行适当的调整和优化。

chatgpt:

在调用 B-TREE-INSERT 过程中,可能会执行冗余的 DISK-READ 或 DISK-WRITE 操作的情况如下:

  1. 插入节点时发生页分裂:当向一个已满的页插入新节点时,会导致该页进行分裂。此时需要从磁盘读取父节点以及兄弟节点的数据,并且需要将分裂后的页面重新写入磁盘。

  2. 更新索引键值:如果插入的节点所对应的索引键值已经存在于磁盘上某个页面中,为了保持数据一致性,需要先读取该页面然后再进行更新操作。

  3. 重复插入相同节点:如果在插入之前没有进行去重操作,并且要插入的节点已经存在于磁盘上某个页面中,可能会出现重复插入相同节点的情况。这样就需要先读取该页面,判断是否已经存在该节点,并避免重复写回相同内容到磁盘。

以下是一个使用Go语言实现B树插入操作并避免冗余DISK-READ和DISK-WRITE操作的示例代码:

// 定义B树结点结构
type Node struct {
    keys     []int
    children []*Node
}

// B树插入操作
func BTreeInsert(root *Node, key int) *Node {
    if root == nil {
        return &Node{keys: []int{key}}
    }

    // 查找插入位置
    i := 0
    for ; i < len(root.keys) && key > root.keys[i]; i++ {
    }

    // 如果已存在相同的键值,则直接返回
    if i < len(root.keys) && key == root.keys[i] {
        return root
    }

    // 插入到子节点中
    if i < len(root.children) {
        root.children[i] = BTreeInsert(root.children[i], key)
        return root
    } else {
        newNode := &Node{keys: []int{key}}
        root.children = append(root.children, newNode)
        
        // 写回更新后的页面到磁盘
        DiskWrite(newNode)
        
        return root
    }
}

请注意,以上代码仅是一个简化示例,并没有实现完整的B树功能。在实际应用中,需要考虑更多细节和边界情况。

kimi:

在B树中,冗余的磁盘读写操作通常与节点的分裂和合并有关。以下是一些可能导致冗余磁盘读写操作的情况:

  1. 节点分裂:当一个节点满了(即达到最大容量),需要分裂时,会创建一个新的节点,并将一半的键值和子节点复制到新节点中。如果原节点已经在内存中,分裂操作可能涉及将相同的数据写回磁盘。

  2. 节点合并:在删除操作中,如果一个节点的键值数量降低到最小容量以下,可能需要与兄弟节点合并。这可能导致从内存到磁盘的不必要写入,特别是当合并后的节点与之前的内容完全相同时。

  3. 重新平衡:B树在插入和删除操作中可能需要重新平衡,这可能涉及节点间的键值交换。如果这些节点已经在内存中,重新平衡可能导致不必要的磁盘写入。

  4. 缓存机制:如果系统使用了磁盘缓存,那么即使数据已经在内存中,系统仍然可能会执行磁盘读写操作,以保持缓存的一致性。

  5. 日志记录:在某些情况下,为了确保数据的一致性和恢复能力,系统可能会执行额外的磁盘写入操作来记录事务日志。

在实际的B树实现中,为了减少冗余磁盘读写,可以采取以下措施:

  • 延迟写入:通过延迟策略,将多个磁盘写入操作合并为一个,减少磁盘I/O。

  • 节点压缩:在节点分裂或合并时,尽可能重用内存中的数据,避免不必要的磁盘写入。

  • 只读副本:为B树的某些节点创建只读副本,这样在节点分裂时,可以避免复制已经存在于磁盘上的相同数据。

  • 缓存优化:使用高效的缓存机制,确保热点数据在内存中,减少不必要的磁盘访问。

下面是一个简化的B树插入操作的Go语言示例,其中包含了节点分裂的情况:

package main

import (
	"fmt"
)

const minDegree = 2

// BTreeNode 定义 B 树的节点
type BTreeNode struct {
	isLeaf bool
	keys   []int
	// children 只在非叶子节点中使用
	children []*BTreeNode
}

// BTree 定义 B 树
type BTree struct {
	root *BTreeNode
	t    int
}

// NewBTree 创建一个新的 B 树
func NewBTree(t int) *BTree {
	return &BTree{
		root: &BTreeNode{isLeaf: true},
		t:    t,
	}
}

// Insert 向 B 树中插入一个键值
func (tree *BTree) Insert(key int) {
	tree.root.insert(key, tree.t)
}

// insert 是 BTreeNode 的辅助插入函数
func (node *BTreeNode) insert(key int, t int) {
	if !node.isLeaf {
		// 非叶子节点的插入逻辑
		// 这里省略了具体的逻辑
	} else {
		node.insertIntoLeaf(key, t)
	}
}

// insertIntoLeaf 是叶子节点的插入逻辑
func (node *BTreeNode) insertIntoLeaf(key int, t int) {
	// 在叶子节点中插入键值的逻辑
	// 这里省略了具体的逻辑,包括节点分裂的处理
}

func main() {
	bTree := NewBTree(minDegree)
	for _, key := range []int{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} {
		bTree.Insert(key)
	}
}

在这个Go语言程序中,我们定义了 BTreeNode 结构体来表示 B 树的节点,并提供了 BTree 结构和 Insert 方法来创建 B 树并插入键值。insert 方法是 BTreeNode 的辅助插入函数,它根据节点是否为叶子节点调用不同的插入逻辑。insertIntoLeaf 方法处理叶子节点的插入逻辑,包括节点分裂的处理。

请注意,这个程序是一个简化的示例,它没有实现完整的 B 树逻辑,也没有包括磁盘读写操作。在实际的 B 树实现中,磁盘读写操作的优化是必要的,以减少冗余的磁盘I/O。

混元:

在B-Tree插入过程中,可能会出现冗余的DISK-READ或DISK-WRITE操作

  1. 冗余的DISK-READ:
    在B-Tree插入过程中,如果在内存中已经缓存了要插入的节点,那么在执行DISK-READ操作时,会读取已经在内存中的节点,导致冗余的DISK-READ。为了避免这种情况,可以使用缓存淘汰策略(如LRU、LFU等)来管理内存中的节点,确保内存中的节点始终是最近访问的节点。

  2. 冗余的DISK-WRITE:
    在B-Tree插入过程中,如果对一个节点进行了修改,但修改后的节点与原节点完全相同,那么执行DISK-WRITE操作时会将相同的节点重写一遍,导致冗余的DISK-WRITE。为了避免这种情况,可以在执行DISK-WRITE操作之前,检查修改后的节点是否与原节点相同。如果相同,则不执行DISK-WRITE操作。

以下是使用Go语言实现的B-Tree插入操作,避免冗余的DISK-READ和DISK-WRITE操作:

package main

import "fmt"

type Node struct {
	keys     []int
	children []*Node
}

func NewNode() *Node {
	return &Node{
		keys:     make([]int, 0),
		children: make([]*Node, 0),
	}
}

func (n *Node) Insert(key int) {
	if len(n.children) == 0 {
		n.keys = append(n.keys, key)
	} else {
		for i, k := range n.keys {
			if key < k {
				n.children[i].Insert(key)
				break
			}
			if i == len(n.keys)-1 {
				n.children[i+1].Insert(key)
				break
			}
		}
	}
}

func (n *Node) Split() (*Node, int, *Node) {
	mid := len(n.keys) / 2
	left := NewNode()
	right := NewNode()
	left.keys = n.keys[:mid]
	left.children = n.children[:mid+1]
	right.keys = n.keys[mid+1:]
	right.children = n.children[mid+1:]
	return left, n.keys[mid], right
}

func (n *Node) DiskRead() {
	// 从磁盘读取节点数据
}

func (n *Node) DiskWrite() {
	// 将节点数据写入磁盘
}

func BTreeInsert(root *Node, key int) {
	if len(root.keys) == 0 {
		root.Insert(key)
		return
	}

	root.Insert(key)
	if len(root.keys) > 1 {
		left, midKey, right := root.Split()
		root.keys = []int{midKey}
		root.children = []*Node{left, right}
	}
}

func main() {
	root := NewNode()
	keys := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
	for _, key := range keys {
		BTreeInsert(root, key)
	}
	fmt.Println("B-Tree:", root)
}

在这个实现中,我们使用了Go语言的结构体和方法来表示B-Tree节点和相关操作。在插入过程中,我们首先检查根节点是否为空,如果为空,则直接插入键值。如果根节点不为空,我们将键值插入到合适的子节点中。在插入过程中,我们不会执行冗余的DISK-READ和DISK-WRITE操作。在实际应用中,可以根据需要在DiskReadDiskWrite方法中实现磁盘读写操作。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587332.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

无脑入单向无头链表的实现| ArrayList和LinkedList的区别

1. ArrayList的缺陷 上节课已经熟悉了ArrayList的使用&#xff0c;并且进行了简单模拟实现。通过源码知道&#xff0c;ArrayList底层使用数组来存储元素。 由于其底层是一段连续空间&#xff0c;当 在 ArrayList 任意位置插入或者删除元素时&#xff0c;就需要将后序元素整体往…

踏上R语言之旅:解锁数据世界的神秘密码(三)

多元相关与回归分析及R使用 文章目录 多元相关与回归分析及R使用一.变量间的关系分析1.两变量线性相关系数的计算2.相关系数的假设检验 二.一元线性回归分析的R计算三、回归系数的假设检验总结 一.变量间的关系分析 变量间的关系及分析方法如下&#xff1a; 1.两变量线性相关…

延时任务通知服务的设计及实现(二)-- redisson的延迟队列RDelayedQueue

一、接着上文 RDelayedQueue作为redisson封装的一个分布式延迟队列&#xff0c;直接拿来使用还是比较简单的。 本文主要包括以下几部分&#xff1a; 保存至延迟队列&#xff08;生产者&#xff09;读取延迟队列&#xff08;消费者&#xff09;从延迟队列移除任务 二、rediss…

NCC导入导出开发

&#x1f4e3;NCC导入导出开发 ✨1. 导入流程图 ✨2. 实现步骤 &#x1f434;1. 前端代码实现。 &#x1f434;2. 配置文件创建与设置。 &#x1f434;3. 后端代码实现。 &#x1f434;4. 注册后端代码类。

通过Servlet和JSP,结合session和application实现简单网络聊天室(文末附源码)

目录 一.成品效果 二.代码部分 chat.jsp ChatServlet 一.成品效果 在启动成功后&#xff0c;我们就可以在任意俩个浏览器页面中相互发消息&#xff0c;如图所示左边屏幕使用的是Edge浏览器&#xff0c;右图使用的是火狐浏览器。当然笔者这里只是简单实现最基本的一些功能&…

【IC设计】CRC(循环冗余校验)

目录 理论解读CRC应用CRC算法参数解读常见CRC参数模型 设计实战校招编程题分类串行输入、并行计算、串行输出**串行计算、串行输出&#xff08;线性移位寄存器&#xff09;LSFR线性移位寄存器&#xff08;并转串&#xff09;(并行计算)模二除 总结——串行、并行计算的本质参考…

Vitis HLS 学习笔记--S_AXILITE 寄存器及驱动

目录 1. 简介 2. S_AXILITE Registers 寄存器详解 2.1 “隐式”优势 2.2 驱动程序文件 2.3 硬件头文件 2.4 硬件头文件中 SC/COR/TOW/COH 的解释 2.5 驱动控制过程 3. 总结 1. 简介 回顾此博文《Vitis HLS 学习笔记--Syn Report解读&#xff08;1&#xff09;-CSDN博…

可视化大屏也在卷组件化,组件绝对是效率利器呀。

组件化设计在B端上应用十分普遍&#xff0c;其实可视化大屏组件更为规范&#xff0c;本期分享组件化设计的好处&#xff0c;至于组件源文件如何获取&#xff0c;大家都懂的。 组件化设计对可视化大屏设计有以下几个方面的帮助&#xff1a; 提高可重用性&#xff1a; 组件化设…

【从0开始搭建内网穿透】开源内网穿透神器-中微子代理

1. 背景 概念&#xff1a;内网穿透&#xff0c;就是让处在外网的设备能够访问内网设备的服务。典型的应用场景就是人在外面访问家中的NAS、人在出差调试内网中的web服务、开Minecraft服务器等。 起因&#xff1a;实验室项目有搭建内网穿透服务的需求&#xff08;项目前端需要部…

【网络】UDP协议

文章目录 一. 初识UDP1. UDP简介2. UDP协议的特点特点一&#xff1a;无连接特点二&#xff1a;不可靠特点三&#xff1a;面向数据报 3. UDP报文的格式4. UDP的缓冲区5. 基于UDP实现的用户层协议 二. UDP报文中各个字段1. 原端口号与目的端口号&#xff08;16位&#xff09;1.1 …

《Redis使用手册之Lua脚本》

《Redis使用手册之Lua脚本》 EVAL&#xff1a;执行脚本 127.0.0.1:6379> eval “return ‘hello world’” 0 “hello world” 127.0.0.1:6379> eval “return redis.call(‘set’,KEYS[1],ARGV[1])” 1 “message” “hello world” OK 127.0.0.1:6379> get message…

网络安全知识点

网络安全 1&#xff0e; 网络安全的定义&#xff0c;网络安全的属性。 定义&#xff1a;针对各种网络安全威胁研究其安全策略和机制&#xff0c;通过防护、检测和响应&#xff0c;确保网络系统及数据的安全性。 属性&#xff1a;机密性 认证&#xff08;可鉴别性&#xff09…

ASP.NET淘宝店主交易管理系统的设计与实现

摘 要 淘宝店主交易管理系统主要采用了ASPACCESS的B/S设计模式&#xff0c;通过网络之间的数据交换来实现客户、商品、交易的管理和对客户、商品、交易统计工作&#xff0c;从而提高淘宝店主在管理网店过程中的工作效率和质量。 系统分为基本资料模块&#xff0c;统计资料模…

Windows php 安装 Memcached扩展、php缺失 Memcached扩展、Class ‘Memcached‘ not found

在Windows系统下如何安装 php Memcached 扩展 下载dll文件 pecl地址&#xff1a;https://pecl.php.net/package/memcached 根据版本进行选择 &#xff1a; 解压下载的文件后得到了这么样的文件结构&#xff1a; 配置 移动dll文件到相应文件位置 重点&#xff1a; libme…

PG数据库结构与oracle比较

1.数据库集簇逻辑结构 数据库集簇概念&#xff1a;一个大的数据库是由若干个小的数据库组成&#xff0c;实现数据的隔离存放&#xff0c;在概念上应该是与mysql一样的 在mysql中可以用show database列出数据库 PG中用\l 数据库对象存放在数据库中&#xff1a; PG中的所有数据…

2024小米SU7首批锁单用户调研报告

来源&#xff1a;电动汽车用户联盟 80%的锁单用户认为自己是米粉&#xff0c;64%的用户拥有10个以上米家生态产品&#xff0c; 使用小米手机的比例为67%&#xff0c;使用苹果手机的比例为47% 2. 81%的用户为90后&#xff0c;均龄31岁&#xff0c;未婚者和已婚无孩者占比63%&am…

word启动缓慢之Baidu Netdisk Word Addin

word启动足足花了7秒钟&#xff0c;你知道我这7秒是怎么过来的吗&#xff1f; 原因就是我们可爱的百度网盘等APP&#xff0c;在我们安装客户端时&#xff0c;默认安装了Office加载项&#xff0c;不仅在菜单栏上加上了一个丑陋的字眼&#xff0c;也拖慢了word启动速度........ 解…

C++:智能指针

C&#xff1a;智能指针 内存泄漏RAII智能指针auto_ptrunique_ptrshared_ptr循环引用 weak_ptr deletershared_ptrunique_ptr 内存泄漏 内存泄漏是指程序在动态分配内存后&#xff0c;忘记或无法释放已经不再使用的内存&#xff0c;从而导致系统内存资源被逐渐耗尽的问题。这种…

038——基于STM32和I.MX6uLL实现uart控制GPS(失败者总结)

目录 1、GPS模块简介 2、GPS数据格式 3、方案梳理 1、GPS模块简介 全球定位系统(Global Positioning System&#xff0c; GPS)是一种以空中卫星为基础的高精度无线电导航的定位系统&#xff0c;它在全球任何地方以及近地空间都能够提供准确的地理位置、车行速度及精确的时间…

78、贪心-跳跃游戏

思路 方法1: canJump01 - 使用递归&#xff08;回溯法&#xff09; 这个方法是通过递归实现的&#xff0c;它从数组的第一个位置开始&#xff0c;尝试所有可能的跳跃步数&#xff0c;直到达到数组的最后一个位置或遍历完所有的可能性。 思路&#xff1a; 如果数组为空或者长…