[ log日志画图]分割模型训练结束生成相关日志运用代码画图

文章目录

  • [ log日志画图]分割模型训练结束生成相关日志运用代码画图
  • 我的log文件:
  • 画图:
    • 1.loss
        • 1.1 loss是干嘛的
        • 1.2 代码
        • 1.3 生成图
    • 2.DICE.IOU
        • 2.1 DICE,IOU是干嘛的(常规介绍)
        • 2.2 代码
        • 2.3 生成图
        • 小白tip

[ log日志画图]分割模型训练结束生成相关日志运用代码画图

我的log文件:

在这里插入图片描述
这里大家看一下名字设置的和我一样吗,不一样后面自己要更改。

画图:

1.loss

1.1 loss是干嘛的

(常规介绍)
模型训练loss值是用来度量模型在训练数据上的拟合程度和预测误差的指标。
在训练过程中,模型通过最小化loss值来优化模型的参数,使其能够更好地拟合训练数据。当loss值越小,说明模型在训练数据上的预测结果与真实值的差距越小,表示模型的性能越好。
通过监控和分析loss值的变化,可以帮助我们理解模型的训练过程。如果loss值在训练过程中持续下降,表示模型正逐渐学习到数据的特征并进行拟合;如果loss值在训练过程中出现波动,可能表示模型遇到了一些困难,需要调整学习率或其他参数来优化模型;如果loss值在训练过程中停止下降或者开始上升,可能表示模型已经过拟合了训练数据,需要采取一些正则化方法来避免过拟合。
总之,通过监控和分析loss值,可以帮助我们追踪模型的训练过程和性能,并根据需要对模型进行调整和优化。

1.2 代码
from matplotlib import rcParams
import matplotlib.pyplot as plt
import re

# 显示中文
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = 'SimSun,Times New Roman'

text = ''
file = open('log2.txt')  # 您的log.txt文件放在与python文件同级目录下
for line in file:
    text += line
file.close()
all_list = re.findall('Train loss: .*[0-9]', text)

train_loss = []
for i in all_list:
    train_loss.append(float(i.split('Train loss: ')[1].split(' ||')[0]))

plt.plot(train_loss, label='Train loss')

plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.legend(loc='best')
plt.show()
1.3 生成图

在这里插入图片描述

2.DICE.IOU

2.1 DICE,IOU是干嘛的(常规介绍)

DICE(Diversity, Independence, Complete Explanation)是一种用于评估机器学习模型性能的指标。在分割模型中,DICE系数被广泛应用。
DICE系数用于度量两个集合的相似性,通常用于评估分割模型的预测准确性。在分割任务中,模型预测出的分割结果与真实的分割结果进行比较。DICE系数的计算公式如下:

DICE = (2 * TP) / (2 * TP + FP + FN)

其中,TP表示正确预测的正样本数量,FP表示错误预测的正样本数量,FN表示未能预测到的正样本数量。DICE系数的取值范围为[0, 1],数值越接近1表示模型预测结果越接近真实结果,数值越接近0表示模型预测结果与真实结果差异越大。
在分割模型中,DICE系数常被用作评估模型的性能指标。通过计算模型预测结果与真实结果之间的DICE系数,可以衡量模型在分割任务中的准确性和稳定性。较高的DICE系数通常表示模型预测结果与真实结果较为一致,而较低的DICE系数可能暗示模型存在较大的误差或不准确性。
因此,DICE系数在分割模型中的作用是评估模型的预测准确性,并提供一种量化的衡量方式,帮助研究人员和从业者比较不同模型的性能,并进行模型的优化和改进。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

IOU(Intersection over Union)被用于评估分割结果的准确性。IOU衡量了预测分割结果与真实分割结果之间的重叠程度。

具体来说,IOU是通过计算预测分割结果的边界框(或像素)与真实分割结果的边界框(或像素)之间的交集面积除以它们的并集面积得到的。IOU的取值范围是0到1,表示预测分割结果与真实分割结果的重叠程度,数值越大表示分割结果越准确。

在训练过程中,常常使用IOU作为损失函数的一部分,帮助模型学习到更准确的分割结果。同时,在评估模型性能时,也会使用IOU作为一个重要的指标来衡量模型的分割准确性。
公式形式如下: IOU = (交集面积) / (并集面积)

2.2 代码
from matplotlib import rcParams
import matplotlib.pyplot as plt
import re

# 显示中文
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = 'SimSun,Times New Roman'

text = ''
file = open('log2.txt')  # 您的log.txt文件放在与python文件同级目录下
for line in file:
    text += line
file.close()
all_list_iou = re.findall('IOU: .*[0-9]', text)
all_list_dice = re.findall('DICE: .*[0-9]', text)

iou_scores = []
dice_scores = []
for i in all_list_iou:
    iou_scores.append(float(i.split('IOU: ')[1].split(', DICE:')[0]))
for i in all_list_dice:
    dice_scores.append(float(i.split('DICE: ')[1].split(' ||')[0]))

plt.plot(iou_scores, label='IOU')
plt.plot(dice_scores, label='DICE')

plt.xlabel('Epoch')
plt.ylabel('Score')
plt.title('IOU and DICE Scores')
plt.legend(loc='best')
plt.show()
2.3 生成图

在这里插入图片描述

小白tip

训练完成后可能没有log.txt文件哈,小白看这里!这里可能会生成一个日期时间(或者其他任何).log文件,你直接打开文件点击查看,这个文件扩展名给它打上勾,然后回去到那个日志文件直接更改成log.txt
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587030.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ROS1快速入门学习笔记 - 12ROS中的坐标管理系统

目录 一、机器人作中的坐标变换 二、海龟案例 一、机器人作中的坐标变换 TF功能包能干什么? 五秒钟之前,机器人头部坐标系相对于全局坐标系的关系是什么样子的?机器人夹取的物体i相对于机器人中心坐标系的位置在哪里?机器人中心…

Linux 第十七章

🐶博主主页:ᰔᩚ. 一怀明月ꦿ ❤️‍🔥专栏系列:线性代数,C初学者入门训练,题解C,C的使用文章,「初学」C,linux 🔥座右铭:“不要等到什么都没有了…

【触摸案例-控件不能响应的情况 Objective-C语言】

一、接下来,我们来说这个“控件不能响应的情况”, 1.素材里边,有一个“不接受用户交互的情况”,这么一个代码,把它打开, 把这个项目啊,复制过来,改一个名字,叫做“04-控件不能响应的情况”, 打开之后,command + R,运行一下, 在storyboard上,你也可以看得出来,我…

Python绘制的好看统计图

代码 sx [Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu, BuPu_r, CMRmap, CMRmap_r, Dark2, Dark2_r, GnBu, GnBu_r, Greens, Greens_r, Greys, Greys_r, OrRd, OrRd_r, Oranges, Oranges_r, PRGn, PRGn_r, Paired, Paired_r, Pastel1, Pastel1_r, P…

C++ 多态详解

文章目录 1. 多态的概念2. 多态的定义及实现2.1 多态的构成条件2.2 虚函数2.3 虚函数的重写2.3.1 虚函数重写的两个例外 2.4 C11 override 和 final2.5 重载、覆盖(重写)、隐藏(重定义)的对比 3. 多态的原理3.1 虚函数表3.2多态的原理 4. 单继承和多继承关系的虚函数表4.1 单继…

C++Day 7 作业

1、lambda #include <iostream>using namespace std;int main() {int a 100;int b 90;int temp;auto fun [&]()mutable->int {temp a;ab;btemp;};fun();cout<<a<<endl;return 0; } 2、vector #include <iostream> #include <vector>…

python安卓自动化pyaibote实践------学习通自动刷课

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文是一个完成一个自动播放课程&#xff0c;避免人为频繁点击脚本的构思与源码。 加油&#xff01;为实现全部电脑自动化办公而奋斗&#xff01; 为实现摆烂躺平的人生而奋斗&#xff01;&#xff01;&#xff…

python项目入门新手攻略

最近工作需要接手了代码量比较大的python开发的项目&#xff0c;平时写python不多&#xff0c;记录一下如何熟悉项目。 分析调用流程-pycallgraph 因为代码量比较大&#xff0c;所以希望通过工具生成代码调用流程&#xff0c;因此用到了pycallgraph。 pycallgraph&#xff0…

翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习三

合集 ChatGPT 通过图形化的方式来理解 Transformer 架构 翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习一翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习二翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深…

56.基于SSM实现的在线教育网站系统(项目 + 论文)

项目介绍 本站是一个B/S模式系统&#xff0c;采用Java的SSM框架作为开发技术&#xff0c;MYSQL数据库设计开发&#xff0c;充分保证系统的稳定性。系统具有界面清晰、操作简单&#xff0c;功能齐全的特点&#xff0c;使得基于SSM的在线教育网站的设计与实现管理工作系统化、规范…

Scikit-Learn回归树

Scikit-Learn回归树 1、决策树1.1、什么是决策树1.2、决策树学习的步骤1.3、决策树算法 1、决策树 决策树&#xff08;DTs&#xff09;是一种用于回归和分类的有监督学习方法。通常&#xff0c;决策树用于分类问题&#xff1b;当决策树用于回归问题时&#xff0c;称为回归树。回…

Midjourney之绘画背景的选择

hello 小伙伴们&#xff0c;我是你们的老朋友——树下&#xff0c;今天分享Midjourney提示词中绘画背景的选择&#xff0c;话不多说&#xff0c;直接开始~ 对于背景的选择&#xff0c;Midjourney中主要体现在年代和所处的环境对绘画产生不同的影响 科技的发展&#xff0c;我们…

matlab学习006-使用matlab绘出系统的冲激响应和阶跃响应波形并求其冲激响应的数值解

目录 题目 1&#xff0c;绘出系统的冲激响应和阶跃响应波形 1&#xff09;基础 2&#xff09;效果 3&#xff09;代码 2&#xff0c;求出t0.5s,1s,1.5s,2s时系统冲激响应的数值解。 1&#xff09;基础 2&#xff09;效果 ​☀ 3&#xff09;代码 题目 已知描述某连续系…

【Python】Anaconda 使用笔记

文章目录 一、创建环境1.1 在任意磁盘中创建环境1.2 添加环境路径envs_dirs 二、安装和使用Python环境三、删除已有的Python环境 前言   笔者使用Python的目的主要是为了学习神经网络等深度学习算法。但是在学习之初配置环境的时候发现之前的环境配置一团乱麻&#xff0c;不仅…

Mybatis进阶(动态SQL)

文章目录 1.动态SQL1.基本介绍1.为什么需要动态SQL2.基本说明3.动态SQL常用标签 2.环境搭建1.新建子模块2.删除不必要的两个文件夹3.创建基本结构4.父模块的pom.xml5.jdbc.properties6.mybatis-config.xml7.MyBatisUtils.java8.MonsterMapper.java9.MonsterMapper.xml10.测试Mo…

第七篇:专家级指南:Python异常处理的艺术与策略

专家级指南&#xff1a;Python异常处理的艺术与策略 1 引言 在编程的世界中&#xff0c;异常处理是一门必修的艺术。它不仅涉及到程序的错误处理&#xff0c;更广泛地影响着软件的稳定性、健壮性和用户体验。本篇文章将深入探讨Python中的异常处理&#xff0c;展示如何通过精心…

Linux:服务器间同步文件的脚本(实用)

一、功能描述 比如有三台服务器&#xff0c;hadoop102、hadoop103、hadoop104&#xff0c;且都有atguigu账号 循环复制文件到所有节点的相同目录下&#xff0c;且脚本可以在任何路径下使用 二、脚本实现 1、查看环境变量 echo $PATH2、进入/home/atguigu/bin目录 在该目录下…

三. Django项目之电商购物商城 -- 校验用户名 , 数据入库

Django项目之电商购物商城 – 校验用户名 , 数据入库 需要开发文档和前端资料的可私聊 一. 路由匹配获得用户名 在注册时 , 用户输入用户名 , 通过ajax请求发送到服务器 , 在路由中设置对应url , 响应视图 , 将用户输入的用户名传入视图 , 与数据库进行校验检查用户名是否重…

信息技术内涵及意义

一、信息技术及其演进趋势 &#xff08;一&#xff09;信息技术概况概念 信息技术&#xff08;Information Technology&#xff0c;IT&#xff09;指“应用在信息加工和处理中的科学、技术与工程的训练方法与管理技巧&#xff1b;上述方法和技巧的应用&#xff1b;计算机及其…

linux高性能服务器--Ngix内存池简单实现

文章目录 内存模型&#xff1a;流程图内存对齐code 内存模型&#xff1a; 流程图 内存对齐 对齐计算 要分配一个以指定大小对齐的内存&#xff0c;可以使用如下公式&#xff1a; 假设要分配大小为n&#xff0c;对齐方式为x&#xff0c;那么 size(n(x-1)) & (~(x-1))。 举个…