Python绘制的好看统计图

代码

sx = ['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'turbo', 'turbo_r', 'twilight', 'twilight_r', 'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r', 'winter', 'winter_r']
for j in range(0,len(sx)+1):
    import matplotlib.pyplot as plt
    import random as r
    import matplotlib as m
    m.rc('font',family='fangsong')
    x = []
    y = []
    s = []
    c = []
    alpha = []
    #色系。
    for i in range(1,100):
        x.append(r.uniform(0,10))
        y.append(r.uniform(0,10))
        s.append(r.randint(10,1600))   #大小
        c.append(r.uniform(1,2000))  #个数
        alpha.append(r.uniform(0.1,0.9))
    plt.scatter(x,y,s=s,c=c,cmap=sx[j],alpha=alpha)    #cmap可以等于:'Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'turbo', 'turbo_r', 'twilight', 'twilight_r', 'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r', 'winter', 'winter_r'
    plt.title('色系: '+sx[j])
    plt.show()

效果:

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587026.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++ 多态详解

文章目录 1. 多态的概念2. 多态的定义及实现2.1 多态的构成条件2.2 虚函数2.3 虚函数的重写2.3.1 虚函数重写的两个例外 2.4 C11 override 和 final2.5 重载、覆盖(重写)、隐藏(重定义)的对比 3. 多态的原理3.1 虚函数表3.2多态的原理 4. 单继承和多继承关系的虚函数表4.1 单继…

C++Day 7 作业

1、lambda #include <iostream>using namespace std;int main() {int a 100;int b 90;int temp;auto fun [&]()mutable->int {temp a;ab;btemp;};fun();cout<<a<<endl;return 0; } 2、vector #include <iostream> #include <vector>…

python安卓自动化pyaibote实践------学习通自动刷课

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文是一个完成一个自动播放课程&#xff0c;避免人为频繁点击脚本的构思与源码。 加油&#xff01;为实现全部电脑自动化办公而奋斗&#xff01; 为实现摆烂躺平的人生而奋斗&#xff01;&#xff01;&#xff…

python项目入门新手攻略

最近工作需要接手了代码量比较大的python开发的项目&#xff0c;平时写python不多&#xff0c;记录一下如何熟悉项目。 分析调用流程-pycallgraph 因为代码量比较大&#xff0c;所以希望通过工具生成代码调用流程&#xff0c;因此用到了pycallgraph。 pycallgraph&#xff0…

翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习三

合集 ChatGPT 通过图形化的方式来理解 Transformer 架构 翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习一翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习二翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深…

56.基于SSM实现的在线教育网站系统(项目 + 论文)

项目介绍 本站是一个B/S模式系统&#xff0c;采用Java的SSM框架作为开发技术&#xff0c;MYSQL数据库设计开发&#xff0c;充分保证系统的稳定性。系统具有界面清晰、操作简单&#xff0c;功能齐全的特点&#xff0c;使得基于SSM的在线教育网站的设计与实现管理工作系统化、规范…

Scikit-Learn回归树

Scikit-Learn回归树 1、决策树1.1、什么是决策树1.2、决策树学习的步骤1.3、决策树算法 1、决策树 决策树&#xff08;DTs&#xff09;是一种用于回归和分类的有监督学习方法。通常&#xff0c;决策树用于分类问题&#xff1b;当决策树用于回归问题时&#xff0c;称为回归树。回…

Midjourney之绘画背景的选择

hello 小伙伴们&#xff0c;我是你们的老朋友——树下&#xff0c;今天分享Midjourney提示词中绘画背景的选择&#xff0c;话不多说&#xff0c;直接开始~ 对于背景的选择&#xff0c;Midjourney中主要体现在年代和所处的环境对绘画产生不同的影响 科技的发展&#xff0c;我们…

matlab学习006-使用matlab绘出系统的冲激响应和阶跃响应波形并求其冲激响应的数值解

目录 题目 1&#xff0c;绘出系统的冲激响应和阶跃响应波形 1&#xff09;基础 2&#xff09;效果 3&#xff09;代码 2&#xff0c;求出t0.5s,1s,1.5s,2s时系统冲激响应的数值解。 1&#xff09;基础 2&#xff09;效果 ​☀ 3&#xff09;代码 题目 已知描述某连续系…

【Python】Anaconda 使用笔记

文章目录 一、创建环境1.1 在任意磁盘中创建环境1.2 添加环境路径envs_dirs 二、安装和使用Python环境三、删除已有的Python环境 前言   笔者使用Python的目的主要是为了学习神经网络等深度学习算法。但是在学习之初配置环境的时候发现之前的环境配置一团乱麻&#xff0c;不仅…

Mybatis进阶(动态SQL)

文章目录 1.动态SQL1.基本介绍1.为什么需要动态SQL2.基本说明3.动态SQL常用标签 2.环境搭建1.新建子模块2.删除不必要的两个文件夹3.创建基本结构4.父模块的pom.xml5.jdbc.properties6.mybatis-config.xml7.MyBatisUtils.java8.MonsterMapper.java9.MonsterMapper.xml10.测试Mo…

第七篇:专家级指南:Python异常处理的艺术与策略

专家级指南&#xff1a;Python异常处理的艺术与策略 1 引言 在编程的世界中&#xff0c;异常处理是一门必修的艺术。它不仅涉及到程序的错误处理&#xff0c;更广泛地影响着软件的稳定性、健壮性和用户体验。本篇文章将深入探讨Python中的异常处理&#xff0c;展示如何通过精心…

Linux:服务器间同步文件的脚本(实用)

一、功能描述 比如有三台服务器&#xff0c;hadoop102、hadoop103、hadoop104&#xff0c;且都有atguigu账号 循环复制文件到所有节点的相同目录下&#xff0c;且脚本可以在任何路径下使用 二、脚本实现 1、查看环境变量 echo $PATH2、进入/home/atguigu/bin目录 在该目录下…

三. Django项目之电商购物商城 -- 校验用户名 , 数据入库

Django项目之电商购物商城 – 校验用户名 , 数据入库 需要开发文档和前端资料的可私聊 一. 路由匹配获得用户名 在注册时 , 用户输入用户名 , 通过ajax请求发送到服务器 , 在路由中设置对应url , 响应视图 , 将用户输入的用户名传入视图 , 与数据库进行校验检查用户名是否重…

信息技术内涵及意义

一、信息技术及其演进趋势 &#xff08;一&#xff09;信息技术概况概念 信息技术&#xff08;Information Technology&#xff0c;IT&#xff09;指“应用在信息加工和处理中的科学、技术与工程的训练方法与管理技巧&#xff1b;上述方法和技巧的应用&#xff1b;计算机及其…

linux高性能服务器--Ngix内存池简单实现

文章目录 内存模型&#xff1a;流程图内存对齐code 内存模型&#xff1a; 流程图 内存对齐 对齐计算 要分配一个以指定大小对齐的内存&#xff0c;可以使用如下公式&#xff1a; 假设要分配大小为n&#xff0c;对齐方式为x&#xff0c;那么 size(n(x-1)) & (~(x-1))。 举个…

【大模型系列】大模型的上下文长度解释与拓展

文章目录 1 什么是大模型的上下文长度&#xff1f;2 拓展大模型上下文长度的方式参考资料 1 什么是大模型的上下文长度&#xff1f; 大模型的上下文长度&#xff08;Context Length&#xff09;是指在自然语言处理&#xff08;NLP&#xff09;的大型语言模型&#xff08;Large…

自动的异地组网工具?

越来越多的企业和个人对远程访问和异地组网需求日益增加。为了满足这一需求&#xff0c;各种技术和服务也不断涌现。其中一项备受关注的技术就是自动的异地组网。本文将介绍这一技术的优势和特点。 【天联】组网的优势 天联组网技术以其卓越的性能和稳定性备受用户称赞。它的优…

数据结构:实验七:数据查找

一、 实验目的 &#xff08;1&#xff09;领会各种查找算法的过程和算法设计。 &#xff08;2&#xff09;掌握查找算法解决实际问题。 二、 实验要求 &#xff08;1&#xff09;编写一个程序exp8-1.cpp, 按提示输入10个任意的整形数据&#xff08;无序&#xff09;&…

数字旅游引领未来智慧之旅:科技应用深度重塑旅游生态,智慧服务全面升级打造极致高品质旅游体验

随着信息技术的飞速发展&#xff0c;数字旅游作为旅游业与科技融合的新兴业态&#xff0c;正以其独特的魅力和优势&#xff0c;引领着旅游业迈向智慧之旅的新时代。数字旅游不仅通过科技应用重塑了旅游生态&#xff0c;更通过智慧服务为游客带来了高品质的旅游体验。本文将深入…