Python 全栈体系【四阶】(三十七)

第五章 深度学习

八、目标检测

3. 目标检测模型

3.1 R-CNN 系列
3.1.1 R-CNN
3.1.1.1 定义

R-CNN(全称 Regions with CNN features) ,是 R-CNN 系列的第一代算法,其实没有过多的使用“深度学习”思想,而是将“深度学习”和传统的“计算机视觉”的知识相结合。比如 R-CNN pipeline 中的第二步和第四步其实就属于传统的“计算机视觉”技术。使用 selective search 提取 region proposals,使用 SVM 实现分类。

在这里插入图片描述

3.1.1.2 思路
  • 给定一张图片,从图片中选出 2000 个独立的候选区域(Region Proposal)。
  • 将每个候选区域输入到预训练好的 AlexNet 中,提取一个固定长度(4096)的特征向量。
  • 对每个目标(类别)训练一 SVM 分类器,识别该区域是否包含目标。
  • 训练一个回归器,修正候选区域中目标的位置:对于每个类,训练一个线性回归模型判断当前框定位是否准确。
3.1.1.3 训练
  • 使用区域生成算法,生成 2000 个候选区域,这里使用的是 Selective search。

  • 对生成的 2000 个候选区域,使用预训练好的 AlexNet 网络进行特征提取。将候选区域变换到网络需要的尺寸(227×227)。 在进行变换的时候,在每个区域的边缘添加 p 个像素(即添加边框,设置 p=16)。同时,改造预训练好的 AlexNet 网络,将其最后的全连接层去掉,并将类别设置为 21(20 个类别,另外一个类别代表背景)。每个候选区域输入到网络中,最终得到 4096×21 个特征。

在这里插入图片描述

  • 利用上面提取到的候选区域的特征,对每个类别训练一个 SVM 分类器(二分类),判断候选框中物体的类别,输出 Positive/Negative。如果该区域与 Ground truth 的 IOU 低于某个阈值,就将给区域设置为 Negative(阈值设置为 0.3)。如下图所示:

在这里插入图片描述

3.1.1.4 效果
  • R-CNN 在 VOC 2007 测试集上 mAP 达到 58.5%,打败当时所有的目标检测算法。
3.1.1.5 缺点
  • 重复计算,训练耗时,每个 region proposal,都需要经过一个 AlexNet 特征提取,为所有的 RoI(region of interest)提取特征大约花费 47 秒。
  • 训练占用空间,特征文件需要保存到文件,5000 张的图片会生成几百 G 的特征文件。
  • selective search 方法生成 region proposal,对一帧图像,需要花费 2 秒。
  • 三个模块(提取、分类、回归)是分别训练的,并且在训练时候,对于存储空间消耗较大。
3.1.2 Fast R-CNN
3.1.2.1 定义

Fast R-CNN 是基于 R-CNN 和 SPPnets 进行的改进。SPPnets,其创新点在于只进行一次图像特征提取(而不是每个候选区域计算一次),然后根据算法,将候选区域特征图映射到整张图片特征图中。

在这里插入图片描述

3.1.2.2 流程
  • 使用 selective search 生成 region proposal,大约 2000 个左右区域候选框

  • 使用 CNN 对图像进行卷积运算,得到整个图像的特征图

  • 对于每个候选框,通过 RoI Projection 映射算法取出该候选框的特征图,再通过 RoI 池化层形成固定长度的特征向量

  • 每个特征向量被送入一系列全连接(fc)层中,最终分支成两个同级输出层 :一个输出个类别加上 1 个背景类别的 Softmax 概率估计,另一个为个类别的每一个类别输出 4 个定位信息

3.1.2.3 改进
  • 和 RCNN 相比,训练时间从 84 小时减少为 9.5 小时,测试时间从 47 秒减少为 0.32 秒。在 VGG16 上,Fast RCNN 训练速度是 RCNN 的 9 倍,测试速度是 RCNN 的 213 倍;训练速度是 SPP-net 的 3 倍,测试速度是 SPP-net 的 3 倍
  • Fast RCNN 在 PASCAL VOC 2007 上准确率相差无几,约在 66~67%之间
  • 加入 RoI Pooling,采用一个神经网络对全图提取特征
  • 在网络中加入了多任务函数边框回归,实现了端到端的训练
3.1.2.4 缺点
  • 依旧采用 selective search 提取 region proposal(耗时 2~3 秒,特征提取耗时 0.32 秒)
  • 无法满足实时应用,没有真正实现端到端训练测试
  • 利用了 GPU,但是 region proposal 方法是在 CPU 上实现的
3.1.3 Faster RCNN

经过 R-CNN 和 Fast-RCNN 的积淀,Ross B.Girshick 在 2016 年提出了新的 Faster RCNN,在结构上将特征抽取、region proposal 提取, bbox regression,分类都整合到了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。

在这里插入图片描述

3.1.3.1 整体流程
  • Conv Layers。作为一种 CNN 网络目标检测方法,Faster RCNN 首先使用一组基础的卷积/激活/池化层提取图像的特征,形成一个特征图,用于后续的 RPN 层和全连接层。
  • Region Proposal Networks(RPN)。RPN 网络用于生成候选区域,该层通过 softmax 判断锚点(anchors)属于前景还是背景,在利用 bounding box regression(包围边框回归)获得精确的候选区域。
  • RoI Pooling。该层收集输入的特征图和候选区域,综合这些信息提取候选区特征图(proposal feature maps),送入后续全连接层判定目标的类别。
  • Classification。利用取候选区特征图计算所属类别,并再次使用边框回归算法获得边框最终的精确位置。
3.1.3.2 RPN 网络

RPN 网络全称 Region Proposal Network(区域提议网络),是专门用来从特征图生成候选区域的网络。其结构如下所示:

在这里插入图片描述

流程步骤:

(1)输入:通过主干网卷积得到的特征图

(2)对于特征图上的每一个点(称之为 anchor point,锚点),生成具有不同 尺度 和 宽高比 的锚点框,这个锚点框的坐标(x,y,w,h)是在原图上的坐标

(3)然后将这些锚点框输入到两个网络层中去,一个(rpn_cls_score)用来分类,即这个锚点框里面的特征图是否属于前景;另外一个(rpn_bbox_pred)输出四个位置坐标(相对于真实物体框的偏移)

(4)将锚点框与 Ground Truth 中的标签框进行 IoU 对比,如果其 IoU 高于某个阈值,则该锚点框标定为前景框,否则属于背景框;对于前景框,还要计算其与真实标签框的 4 个位置偏移;将这个标注好的锚点框(带有 前背景类别 和 位置偏移 标注)与 3 中卷积网络层的两个输出进行 loss 比较(类别:CrossEntrpy loss 和 位置回归:smooth L1 loss),从而学习到如何提取前景框

(5)学习到如何提取前景框后,就根据 rpn_cls_score 层的输出概率值确定前景框;位置偏移值则被整合到锚点框的坐标中以得到实际的框的坐标;这样子就得到了前景框,起到了 selective search 的作用。RPN 生成的 proposal 就称为 Region of Interest.由于他们具有不同的尺度和长度,因此需要通过一个 ROI pooling 层获得统一的大小

3.1.3.3 Anchors

Anchors(锚点)指由一组矩阵,每个矩阵对应不同的检测尺度大小。如下矩阵:

[[ -84.  -40.  99.  55.]
 [-176.  -88. 191. 103.]
 [-360. -184. 375. 199.]
 [ -56.  -56.  71.  71.]
 [-120. -120. 135. 135.]
 [-248. -248. 263. 263.]
 [ -36.  -80.  51.  95.]
 [ -80. -168.  95. 183.]
 [-168. -344. 183. 359.]]

其中每行 4 个值( x 1 , y 1 , x 2 , y 2 x_1, y_1, x_2, y_2 x1,y1,x2,y2),对应矩形框左上角、右下角相对于中心点的偏移量。9 个矩形共有三种形状,即 1:1, 1:2, 2:1,即进行多尺度检测。

在这里插入图片描述

例如,一张 800*600 的原始图片,经过 VGG 下采样后(生成特征矩阵)16 倍大小,大小变为 50*38,每个点设置 9 个 anchor,则总数为:

ceil(800 / 16) * ceil(600 / 16) * 9 = 50 * 38 * 9 = 17100
3.1.3.4 Bounding box regression

物体识别完成后,通过一种方式对外围框进行调整,使得和目标物体更加接近。

3.1.3.5 损失函数

对一个图像的损失函数,是一个分类损失函数与回归损失函数的叠加:

L ( { p i } , { t i } ) = 1 N c l s ∑ L c l s ( p i , p i ∗ ) + λ 1 N r e g ∑ p i ∗ L r e g ( t i , t i ∗ ) L(\{p_i\},\{t_i\}) = \frac{1}{N_{cls}}\sum{L_{cls}(p_i, p_i^*)} + \lambda\frac{1}{N_{reg}}\sum{p_i^*L_{reg}(t_i, t_i^*)} L({pi},{ti})=Ncls1Lcls(pi,pi)+λNreg1piLreg(ti,ti)

  • i 是一个 mini-batch 中 anchor 的索引

  • p i p_i pi是 anchor i 为目标的预测概率

  • ground truth 标签 p i ∗ p_i^* pi就是 1,如果 anchor 为负, p i ∗ p_i^* pi就是 0

  • t i t_i ti是一个向量,表示预测的包围盒的 4 个参数化坐标

  • N c l s N_{cls} Ncls是与正 anchor 对应的 ground truth 的坐标向量

  • N r e g N_{reg} Nreg为 anchor 位置的数量(大约 2400), λ \lambda λ=10

分类损失函数:

L c l s ( p i , p i ∗ ) = − l o g [ p i ∗ p i + ( 1 − p i ∗ ) ( 1 − p i ) ] L_{cls}(p_i, p_i^*) = -log[p_i^*p_i + (1-p_i^*)(1-p_i)] Lcls(pi,pi)=log[pipi+(1pi)(1pi)]

位置损失函数:

L r e g ( t i , t i ∗ ) = R ( t i − t i ∗ ) L_{reg}(t_i, t_i^*) = R(t_i - t_i^*) Lreg(ti,ti)=R(titi)

其中:

R = s m o o t h L 1 ( x ) = { 0.5 x 2    i f ∣ x ∣ < 1 ∣ x ∣ − 0.5    o t h e r w i s e R = smooth_{L1}(x) = \begin{cases}{0.5x^2} \ \ if |x| < 1\\ |x|-0.5 \ \ otherwise \end{cases} R=smoothL1(x)={0.5x2  ifx<1x0.5  otherwise

3.1.3.6 改进
  • 在 VOC2007 测试集测试 mAP 达到 73.2%,目标检测速度可达 5 帧/秒
  • 提出 Region Proposal Network(RPN),取代 selective search,生成待检测区域,时间从 2 秒缩减到了 10 毫秒
  • 真正实现了一个完全的 End-To-End(端对端)的 CNN 目标检测模型
  • 共享 RPN 与 Fast RCNN 的特征
3.1.3.7 缺点
  • 还是无法达到实时检测目标
  • 获取 region proposal, 再对每个 proposal 分类计算量还是较大
3.1.4 RCNN 系列总结
3.1.4.1 RCNN

解决什么问题:能够从图像中检测出物体

使用了什么方法:

  • SS 算法产生候选区
  • 对每个候选区进行卷积,得到每个区域的特征图
  • 将特征图送到一组 SVM 做多分类,再训练一个模型定位

取得了什么效果:mAP 能达到 58.5%,速度极慢

特点及适用性:慢,几乎不用

3.1.4.2 Fast RCNN

解决什么问题:对 RCNN 模型进行优化,提升速度

使用了什么方法:

  • SS 算法产生候选区
  • 对整个图像进行卷积,得到整个图像的特征图(最主要的优化)
  • 将分类器、定位模型整合到一起,用神经网络来替代

取得了什么效果:

  • 速度:速度较上一代模型 RCNN 成倍提升,达到 0.5F/S
  • mAP:66~67%
3.1.4.3 Faster RCNN

解决什么问题:对 Fast RCNN 进行优化,提升速度和精度

使用了什么方法:

  • 改进候选区域产生方法:使用 RPN,在特征图而不是在原图上产生候选区,只需 10ms
  • 引入 Anchor Box 机制:在同一个检测点,使用大小不同、比例不同的检测框
  • 将所有步骤(提取特征、生成候选区、产生分类+定位输出)整合到同一个模型中

取得了什么效果:

  • 速度:5F / S
  • mAP:73.2%

特点及适用性:

  • 缺点:检测速度还是较慢,无法检测视频,无法实现实时性检测
  • 优点:精度不错
  • 适用性:适用于精度要求较高,速度要求不高的情况

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/585314.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

华为配置mDNS网关示例(AP与AC间二层转发)

华为配置mDNS网关示例&#xff08;AP与AC间二层转发&#xff09; 组网图形 图1 配置mDNS网关组网图 组网需求配置思路操作步骤配置文件 组网需求 如图1所示&#xff0c;某企业的移动终端通过WLAN连接网络&#xff0c;AP_1和AP_2分别与AC之间采用二层转发。部门1和部门2分别属…

RakSmart站群服务器租用注意事项科普

随着互联网的飞速发展&#xff0c;站群运营成为越来越多企业和个人的选择。而RakSmart作为知名的服务器提供商&#xff0c;其站群服务器租用服务备受关注。在租用RakSmart站群服务器时&#xff0c;源库建议有一些关键的注意事项需要特别留意&#xff0c;以确保服务器的稳定运行…

SpringBoot学习之SpringBoot3集成OpenApi(三十八)

Springboot升级到Springboot3以后,就彻底放弃了对之前swagger的支持,转而重新支持最新的OpenApi,今天我们通过一个实例初步看看OpenApi和Swagger之间的区别. 一、POM依赖 我的POM文件如下,仅作参考: <?xml version="1.0" encoding="UTF-8"?>…

鼓吹开源无前途,Meta却开源了Llama 3模型,无需注册在线即可使用

Meta AI一直是人工智能领域开源领域的领导者&#xff0c;一边是OpenAI鼓吹闭源才是人工智能大模型的未来&#xff0c;但是Meta AI却开源了自己的Llama 3大模型&#xff0c;且Llama 3开源模型支持80亿与700亿参数&#xff0c;而未来更大的4000亿参数大模型还在继续训练中。其Lla…

webpack3升级webpack4遇到的各种问题汇总

webpack3升级webpack4遇到的各种问题汇总 问题1 var outputNamecompilation.mainTemplate.applyPluginWaterfull(asset-path,outputOptions.filename,{......)TypeError: compilation.mainTemplate.applyPluginsWaterfall is not a function解决方法 html-webpack-plugin 版…

机器学习实战-聚类算法

聚类算法是一种无监督学习的算法&#xff0c;用于将数据集中的数据分成不同的聚类或组。聚类算法是数据挖掘和机器学习领域中常见的技术之一&#xff0c;具有广泛的应用。 以下是聚类算法的一些知识点&#xff1a; 聚类算法的目的是将数据集划分为不同的组&#xff0c;使得组内…

【酱浦菌-爬虫项目】爬取百度文库文档

1. 首先&#xff0c;定义了一个变量url&#xff0c;指向百度文库的搜索接口 ‘https://wenku.baidu.com/gsearch/rec/pcviewdocrec’。 2. 然后&#xff0c;设置了请求参数data&#xff0c;包括文档ID&#xff08;docId&#xff09;和查询关键词&#xff08;query&#xff09;。…

【蓝桥杯C++A组省三 | 一场勇敢的征途与致19岁的信】

随着4.13西大四楼考场的倒计时结束… 就这样蓝桥杯落幕了 省三的名次既满足又不甘心&#xff0c;但又确乎说得上是19岁途中的又一枚勋章 从去年得知&#xff0c;纠结是否要报名、到寒假开始战战兢兢地准备、陆续开始创作博客&#xff0c;记录好题和成长……感谢你们的关注&…

Flask表单详解

Flask表单详解 概述跨站请求伪造保护表单类把表单渲染成HTML在视图函数中处理表单重定向和用户会话Flash消息 概述 尽管 Flask 的请求对象提供的信息足够用于处理 Web 表单&#xff0c;但有些任务很单调&#xff0c;而且要重复操作。比如&#xff0c;生成表单的 HTML 代码和验…

偏自相关系数的等价定义

第k个回归系数的值 原始定义

将两个YOLO格式的数据集合并,并保持相同类别

1. 需求分析 最近在做两个YOLO格式的数据集合并&#xff0c;第一个数据集包含了第二个数据集的类别&#xff0c;但是相应的类别id对应不住&#xff0c;需要修改第二个数据集的类别标签与第一个数据集对应住。 2. 修改第二个数据集标签对应 2.1 实现思路 导入所需的库&#x…

CCF-CSP真题题解:201409-2 画图

201409-2 画图 #include <iostream> #include <cstring> #include <algorithm> using namespace std;const int N 110;int n; bool a[N][N];int main() {scanf("%d", &n);while (n--) {int x1, y1, x2, y2;scanf("%d%d%d%d", &…

R语言的学习——day1

将数据框中某一列数据改成行名 代码 结果

社交媒体数据恢复:Skype国内、际版

恢复已删除的Skype聊天记录可能需要一些操作&#xff0c;但请注意&#xff0c;这不一定总是可行的&#xff0c;并且可能需要一些技术知识。以下是一些步骤&#xff0c;您可以尝试恢复您的Skype聊天记录&#xff1a; 1. 检查备份&#xff1a; - 如果您有Skype备份&#xff0…

Ollama配置webui连接大预言模型

Ollama配置Web UI连接大预言模型 默认ollama安装后&#xff0c;chat对话只有命令行界面&#xff0c;交互体验较差。借助open-webui可以通过web界面连接ollama&#xff0c;从而实现类似chatgpt式的web交互体验。 使用家用PC实践记录如下&#xff1a; 1. 环境配置 本次使用的操作…

智能私信软件:转化率提升的神器

在数字化营销领域&#xff0c;利用智能私信软件策略提升转化率已经成为一种不可忽视的趋势。随着人工智能技术的发展&#xff0c;这些软件变得越来越智能&#xff0c;能够根据用户的行为和偏好提供个性化的沟通体验。在这篇文章中&#xff0c;我们将探讨如何有效地运用智能私信…

启明云端2.4寸屏+ESP32-S3+小型智能调速电动家用除草机案例 触控三档调速,能显示电压故障码

今天给大家分享个启明云端2.4寸屏ESP32-S3小型智能调速电动家用除草机案例&#xff0c;国外有草坪文化&#xff0c;这个机器能智能触控三档调速&#xff0c;带屏能显示电压故障码&#xff0c;数显档位&#xff08;3档最大&#xff09;&#xff0c;触控屏&#xff0c;长按3秒就能…

git 的迁移

现象是gitlab经常会挂掉&#xff0c;linux会显示磁盘空间不足&#xff0c;实际上&#xff0c;我们linux某个目录的空间是4T。这个空间应该是足够的。猜测是gitlab的安装目录不对导致的空间不足。 1、查找原因 用rpm 安装gitlab会有自己的目录&#xff0c;很多安装文件会在opt…

Android binder死亡通知机制

在Andorid 的binder系统中&#xff0c;当Bn端由于种种原因死亡时&#xff0c;需要通知Bp端&#xff0c;Bp端感知Bn端死亡后&#xff0c;做相应的处理。 使用 Bp需要先注册一个死亡通知&#xff0c;当Bn端死亡时&#xff0c;回调到Bp端。 1&#xff0c;java代码注册死亡通知 …

使用硬盘对拷方法将数据无损转移到另一个硬盘!

硬盘对拷&#xff0c;其实就是磁盘克隆&#xff0c;很多人喜欢将其说成对拷&#xff0c;或者硬盘复制等&#xff0c;但不管怎么说&#xff0c;他们的目的都是一个&#xff0c;想要把原硬盘上的全部数据&#xff08;包括系统、程序、个人文件、隐藏配置数据等&#xff09;都无损…