Android binder死亡通知机制

在Andorid 的binder系统中,当Bn端由于种种原因死亡时,需要通知Bp端,Bp端感知Bn端死亡后,做相应的处理。

使用
Bp需要先注册一个死亡通知,当Bn端死亡时,回调到Bp端。

1,java代码注册死亡通知

try {
	binder.asBinder().linkToDeath(new IBinder.DeathRecipient() {
	@Override
		public void binderDied() {
			//处理
		}
	},0);
} catch (RemoteException e) {
	e.printStackTrace();
}

2,c++代码注册死亡通知

	// Create the death listener.
	class DeathObserver : public IBinder::DeathRecipient {
		 void binderDied(const wp<IBinder>& who) {
		 	//处理
			ALOGD("service is died\n");
		}
	};
	sp<IBinder::DeathRecipient> mDeathObserver = new DeathObserver();
	sp<IBinder> binder = sm->getService(String16("xxx"));//获取一个BpBinder对象
	if(binder->linkToDeath(mDeathObserver) != NO_ERROR){
		ALOGE("link to death failed");
	}else{
		ALOGE("link to death sucess");
	}

当Bn端死亡时,回调binderDied方法

注册死亡通知分析
从上面可以看出来,Bp端通过linkToDeath方法注册死亡通知。我们从java端的linkToDeath开始分析。
binder.asBinder返回的是一个BinderProxy对象

//frameworks\base\core\java\android\os\Binder.java
public native void linkToDeath(DeathRecipient recipient, int flags)
            throws RemoteException;

这是一个native方法,对应android_os_BinderProxy_linkToDeath方法

//frameworks\base\core\jni\android_util_Binder.cpp
static const JNINativeMethod gBinderProxyMethods[] = {
     /* name, signature, funcPtr */
   	//省略
    {"linkToDeath",         "(Landroid/os/IBinder$DeathRecipient;I)V", (void*)android_os_BinderProxy_linkToDeath},
  	//省略
};

继续来看一下android_os_BinderProxy_linkToDeath方法

//frameworks\base\core\jni\android_util_Binder.cpp
static void android_os_BinderProxy_linkToDeath(JNIEnv* env, jobject obj,
        jobject recipient, jint flags) // throws RemoteException
{
    //省略
    IBinder* target = (IBinder*)
        env->GetLongField(obj, gBinderProxyOffsets.mObject);//取出native层的 BpBinder对象
    
	//省略

    if (!target->localBinder()) {//只有Bp端才可以注册死亡通知
        DeathRecipientList* list = (DeathRecipientList*)
                env->GetLongField(obj, gBinderProxyOffsets.mOrgue);//1
        sp<JavaDeathRecipient> jdr = new JavaDeathRecipient(env, recipient, list);//2
        status_t err = target->linkToDeath(jdr, NULL, flags);//3
        //省略
    }
}

注释1处取出DeathRecipientList对象,DeathRecipientList对象中有一个集合

//frameworks\base\core\jni\android_util_Binder.cpp
class DeathRecipientList : public RefBase {
    List< sp<JavaDeathRecipient> > mList;
    Mutex mLock;

注释2处新建一个JavaDeathRecipient对象,并将其加入到上面的集合中

//frameworks\base\core\jni\android_util_Binder.cpp
class JavaDeathRecipient : public IBinder::DeathRecipient
{
public:
    JavaDeathRecipient(JNIEnv* env, jobject object, const sp<DeathRecipientList>& list)
        : mVM(jnienv_to_javavm(env)), mObject(env->NewGlobalRef(object)),
          mObjectWeak(NULL), mList(list)
    {
        // These objects manage their own lifetimes so are responsible for final bookkeeping.
        // The list holds a strong reference to this object.
        LOGDEATH("Adding JDR %p to DRL %p", this, list.get());
        list->add(this);//加到集合中

        android_atomic_inc(&gNumDeathRefs);
        incRefsCreated(env);
    }

注释3处target为BpBinder对象,继续来看BpBinder的linkToDeath方法

//frameworks\native\libs\binder\BpBinder.cpp
status_t BpBinder::linkToDeath(
    const sp<DeathRecipient>& recipient, void* cookie, uint32_t flags)
{
	/*构造Obituary 对象*/
    Obituary ob;
    ob.recipient = recipient;
    ob.cookie = cookie;
    ob.flags = flags;

    LOG_ALWAYS_FATAL_IF(recipient == NULL,
                        "linkToDeath(): recipient must be non-NULL");

    {
        AutoMutex _l(mLock);

        if (!mObitsSent) {//mObitsSent默认为0,可以看出只会发送一次死亡通知
            if (!mObituaries) {
                mObituaries = new Vector<Obituary>;
                if (!mObituaries) {
                    return NO_MEMORY;
                }
                ALOGV("Requesting death notification: %p handle %d\n", this, mHandle);
                getWeakRefs()->incWeak(this);
                IPCThreadState* self = IPCThreadState::self();
                self->requestDeathNotification(mHandle, this);//1
                self->flushCommands();//2
            }
            ssize_t res = mObituaries->add(ob);//3
            return res >= (ssize_t)NO_ERROR ? (status_t)NO_ERROR : res;
        }
    }

    return DEAD_OBJECT;
}

注释1处封装数据

//frameworks\native\libs\binder\IPCThreadState.cpp
status_t IPCThreadState::requestDeathNotification(int32_t handle, BpBinder* proxy)
{
    mOut.writeInt32(BC_REQUEST_DEATH_NOTIFICATION);//注意:cmd为BC_REQUEST_DEATH_NOTIFICATION
    mOut.writeInt32((int32_t)handle);
    mOut.writePointer((uintptr_t)proxy);//这个proxy是前面的BpBinder对象
    return NO_ERROR;
}

注释2处将数据写给binder驱动

//frameworks\native\libs\binder\IPCThreadState.cpp
void IPCThreadState::flushCommands()
{
    if (mProcess->mDriverFD <= 0)
        return;
    talkWithDriver(false);//通过ioctl写给驱动
}

注释3处将前面构造好的Obituary 添加到集合中,该Obituary对象的recipient 成员指向我们前面传入的JavaDeathRecipient对象。
binder驱动开始处理,注意cmd为BC_REQUEST_DEATH_NOTIFICATION

//kernel\drivers\android\binder.c
case BC_REQUEST_DEATH_NOTIFICATION:
case BC_CLEAR_DEATH_NOTIFICATION: {
	uint32_t target;
	binder_uintptr_t cookie;
	struct binder_ref *ref;
	struct binder_ref_death *death = NULL;
	if (get_user(target, (uint32_t __user *)ptr))//从用户空间取出handle
				return -EFAULT;
	ptr += sizeof(uint32_t);
	if (get_user(cookie, (binder_uintptr_t __user *)ptr))//从用户空间取出BpBinder对象地址
				return -EFAULT;
	ptr += sizeof(binder_uintptr_t);
	if (cmd == BC_REQUEST_DEATH_NOTIFICATION) {
		death = kzalloc(sizeof(*death), GFP_KERNEL);//申请binder_ref_death空间
		//省略			
	}
	binder_proc_lock(proc);
	ref = binder_get_ref_olocked(proc, target, false);//根据handle,找到binder_ref
	//省略
	if (cmd == BC_REQUEST_DEATH_NOTIFICATION) {
		binder_stats_created(BINDER_STAT_DEATH);
		INIT_LIST_HEAD(&death->work.entry);
		death->cookie = cookie;//将BpBinder对象地址保存在death的cookie 中
		ref->death = death;//将death保存在binder_ref的death 成员中
		if (ref->node->proc == NULL) {//注册的时候,Bn端刚好死亡,一般不太可能
			ref->death->work.type = BINDER_WORK_DEAD_BINDER;

			binder_inner_proc_lock(proc);
			binder_enqueue_work_ilocked(&ref->death->work, &proc->todo);
					binder_wakeup_proc_ilocked(proc);
					binder_inner_proc_unlock(proc);
		}
	}
	//省略

对于注册死亡通知时驱动的处理上面的注释已经说的很清楚。主要是将BpBinder对象地址保存在binder_ref的binder_ref_death 结构体中,这里只是做了保存,我们还没有看到死亡通知到底是如何触发的呢,即binderDied是如何被调用到的?接下来我们就来看一下死亡通知的触发
死亡通知触发分析
当Bn端死亡时,就要开始释放资源,调用binder_release,从这个方法开始分析

//kernel\drivers\android\binder.c
static int binder_release(struct inode *nodp, struct file *filp)
{
	struct binder_proc *proc = filp->private_data;

	debugfs_remove(proc->debugfs_entry);
	binder_defer_work(proc, BINDER_DEFERRED_RELEASE);

	return 0;
}

调用binder_defer_work,注意这个proc还是当前进程即Bn端所处的进程,第二个参数为BINDER_DEFERRED_RELEASE

//kernel\drivers\android\binder.c
static DECLARE_WORK(binder_deferred_work, binder_deferred_func);
static void
binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer)
{
	mutex_lock(&binder_deferred_lock);
	proc->deferred_work |= defer;
	if (hlist_unhashed(&proc->deferred_work_node)) {
		hlist_add_head(&proc->deferred_work_node,
				&binder_deferred_list);
		queue_work(binder_deferred_workqueue, &binder_deferred_work);//1
	}
	mutex_unlock(&binder_deferred_lock);
}

注释1处开始执行工作队列,对于binder_deferred_work,则是执行binder_deferred_func函数

//kernel\drivers\android\binder.c
static void binder_deferred_func(struct work_struct *work)
{
	struct binder_proc *proc;
	struct files_struct *files;

	int defer;

	do {
		
		//省略

		if (defer & BINDER_DEFERRED_RELEASE)
			binder_deferred_release(proc); /* frees proc */

		if (files)
			put_files_struct(files);
	} while (proc);
}

对于BINDER_DEFERRED_RELEASE,调用binder_deferred_release继续处理

//kernel\drivers\android\binder.c
static void binder_deferred_release(struct binder_proc *proc)
{
	struct binder_context *context = proc->context;
	struct rb_node *n;
	int threads, nodes, incoming_refs, outgoing_refs, active_transactions;

	BUG_ON(proc->files);

	mutex_lock(&binder_procs_lock);
	hlist_del(&proc->proc_node);//删除proc_node节点
	mutex_unlock(&binder_procs_lock);

	mutex_lock(&context->context_mgr_node_lock);
	/*如果是servicemanager死亡,则删除context->binder_context_mgr_node*/
	if (context->binder_context_mgr_node &&
	    context->binder_context_mgr_node->proc == proc) {
		//省略
	}
	mutex_unlock(&context->context_mgr_node_lock);
	binder_inner_proc_lock(proc);

	proc->tmp_ref++;

	proc->is_dead = true;
	threads = 0;
	active_transactions = 0;
	/*删除binder_thread*/
	while ((n = rb_first(&proc->threads))) {
		//省略
	}

	nodes = 0;
	incoming_refs = 0;
	/*删除binder_node*/
	while ((n = rb_first(&proc->nodes))) {
		struct binder_node *node;

		node = rb_entry(n, struct binder_node, rb_node);
		nodes++;
		/*
		 * take a temporary ref on the node before
		 * calling binder_node_release() which will either
		 * kfree() the node or call binder_put_node()
		 */
		binder_inc_node_tmpref_ilocked(node);
		rb_erase(&node->rb_node, &proc->nodes);
		binder_inner_proc_unlock(proc);
		incoming_refs = binder_node_release(node, incoming_refs);//1
		binder_inner_proc_lock(proc);
	}
	binder_inner_proc_unlock(proc);

	outgoing_refs = 0;
	binder_proc_lock(proc);
	/*删除binder_ref*/
	while ((n = rb_first(&proc->refs_by_desc))) {
		//省略
	}
	binder_proc_unlock(proc);

	binder_release_work(proc, &proc->todo);
	binder_release_work(proc, &proc->delivered_death);

	binder_debug(BINDER_DEBUG_OPEN_CLOSE,
		     "%s: %d threads %d, nodes %d (ref %d), refs %d, active transactions %d\n",
		     __func__, proc->pid, threads, nodes, incoming_refs,
		     outgoing_refs, active_transactions);

	binder_proc_dec_tmpref(proc);

binder_deferred_release方法里面还是做了很多事情的,上面注释也已经说的很清楚。我们继续来看一下注释1处的binder_node_release方法

//kernel\drivers\android\binder.c
static int binder_node_release(struct binder_node *node, int refs)
{
	//省略
	hlist_for_each_entry(ref, &node->refs, node_entry) {
		refs++;
		binder_inner_proc_lock(ref->proc);
		if (!ref->death) {
			binder_inner_proc_unlock(ref->proc);
			continue;
		}

		death++;

		BUG_ON(!list_empty(&ref->death->work.entry));
		ref->death->work.type = BINDER_WORK_DEAD_BINDER;
		binder_enqueue_work_ilocked(&ref->death->work,
					    &ref->proc->todo);
		binder_wakeup_proc_ilocked(ref->proc);
		binder_inner_proc_unlock(ref->proc);
	}
	
	//省略

}

取出node中的binder_ref,如果binder_ref中有注册过死亡通知,则添加到Bp端的进程的todo两边,唤醒Bp端进程。注意work的type为BINDER_WORK_DEAD_BINDER。Bp端进程被唤醒,Bp端进程开始处理BINDER_WORK_DEAD_BINDER这个type。注意现在是运行在Bp端所在的进程

//kernel\drivers\android\binder.c
static int binder_thread_read(struct binder_proc *proc,
			      struct binder_thread *thread,
			      binder_uintptr_t binder_buffer, size_t size,
			      binder_size_t *consumed, int non_block)
{
	//省略
	case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {
			struct binder_ref_death *death;
			uint32_t cmd;
			binder_uintptr_t cookie;

			death = container_of(w, struct binder_ref_death, work);//取出binder_ref中的binder_ref_death
			if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION)
				cmd = BR_CLEAR_DEATH_NOTIFICATION_DONE;
			else
				cmd = BR_DEAD_BINDER;//传给用户空间的cmd为BR_DEAD_BINDER
			cookie = death->cookie;//取出cookie,这个cookie就是之前注册时的BpBinder对象

			if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) {
				//省略
			} else {
				binder_enqueue_work_ilocked(
						w, &proc->delivered_death);
				binder_inner_proc_unlock(proc);
			}
			if (put_user(cmd, (uint32_t __user *)ptr))
				return -EFAULT;
			ptr += sizeof(uint32_t);
			if (put_user(cookie,
				     (binder_uintptr_t __user *)ptr))
				return -EFAULT;
			ptr += sizeof(binder_uintptr_t);
			binder_stat_br(proc, thread, cmd);
			if (cmd == BR_DEAD_BINDER)
				goto done; /* DEAD_BINDER notifications can cause transactions */
		} break;
}

经过上面的处理,Bp端进程的用户空间就会得到cmd为BR_DEAD_BINDER的命令。Bp端进程是在executeCommand方法中处理命令的

//frameworks\native\libs\binder\IPCThreadState.cpp
status_t IPCThreadState::executeCommand(int32_t cmd)
{
	//省略
	case BR_DEAD_BINDER:
        {
            BpBinder *proxy = (BpBinder*)mIn.readPointer();//1
            proxy->sendObituary();//2
            mOut.writeInt32(BC_DEAD_BINDER_DONE);
            mOut.writePointer((uintptr_t)proxy);
        } break;
    //省略    

}

注释1处取出驱动传过来的BpBinder对象,注释2处调用BpBinder的sendObituary方法

//frameworks\native\libs\binder\BpBinder.cpp
void BpBinder::sendObituary()
{
    mAlive = 0;
    if (mObitsSent) return;

    mLock.lock();
    Vector<Obituary>* obits = mObituaries;
    /*首先先向驱动发送清楚这个死亡通知的事件*/
    if(obits != NULL) {
        ALOGV("Clearing sent death notification: %p handle %d\n", this, mHandle);
        IPCThreadState* self = IPCThreadState::self();
        self->clearDeathNotification(mHandle, this);
        self->flushCommands();
        mObituaries = NULL;
    }
    mObitsSent = 1;
    mLock.unlock();

    if (obits != NULL) {
        const size_t N = obits->size();
        for (size_t i=0; i<N; i++) {
            reportOneDeath(obits->itemAt(i));//1
        }

        delete obits;
    }
}

注释1处,从mObituaries取出一个个的Obituary对象,然后执行reportOneDeath方法。还记得之前在注册死亡通知时,将我们的recipient封装在了Obituary对象中了。继续来看reportOneDeath方法

void BpBinder::reportOneDeath(const Obituary& obit)
{
    sp<DeathRecipient> recipient = obit.recipient.promote();
    ALOGV("Reporting death to recipient: %p\n", recipient.get());
    if (recipient == NULL) return;

    recipient->binderDied(this);
}

这里取出我们的recipient对象,调用其binderDied方法。如果是C++注册的死亡通知,那C++层的binderDied就得到执行了。我们接下来看看是如何调用到java端的binderDied方法。对于java端,我们之前传入的是JavaDeathRecipient对象,所以接在看JavaDeathRecipient的binderDied方法

//frameworks\base\core\jni\android_util_Binder.cpp
void binderDied(const wp<IBinder>& who)
    {
        LOGDEATH("Receiving binderDied() on JavaDeathRecipient %p\n", this);
        if (mObject != NULL) {
            JNIEnv* env = javavm_to_jnienv(mVM);

            env->CallStaticVoidMethod(gBinderProxyOffsets.mClass,
                    gBinderProxyOffsets.mSendDeathNotice, mObject);//调用BinderProxy的sendDeathNotice方法
          //省略
        }
    }

调用BinderProxy的sendDeathNotice方法,传入的mObject为之前我们注册时传入的DeathRecipient对象

//frameworks\base\core\java\android\os\Binder.java
private static final void sendDeathNotice(DeathRecipient recipient) {
        if (false) Log.v("JavaBinder", "sendDeathNotice to " + recipient);
        try {
            recipient.binderDied();
        }
        catch (RuntimeException exc) {
            Log.w("BinderNative", "Uncaught exception from death notification",
                    exc);
        }
    }

可以看出,调用binderDied,之前注册的死亡通知得以执行。Bp端就感知到了Bn端的死亡

总结
死亡通知机制包含Bp端注册死亡通知以及Bn端死亡时触发死亡通知,用一张图来总结下其流程

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/585286.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用硬盘对拷方法将数据无损转移到另一个硬盘!

硬盘对拷&#xff0c;其实就是磁盘克隆&#xff0c;很多人喜欢将其说成对拷&#xff0c;或者硬盘复制等&#xff0c;但不管怎么说&#xff0c;他们的目的都是一个&#xff0c;想要把原硬盘上的全部数据&#xff08;包括系统、程序、个人文件、隐藏配置数据等&#xff09;都无损…

mysql基础知识汇总

本文自行整理&#xff0c;只做学习记忆之用&#xff0c;若有不当之处请指出 一、数据库三层结构 &#xff08;1&#xff09;所谓安装Mysql数据库&#xff0c;就是在主机安装一个数据库管理系统(DBMS),这个管理程序可以管理多个数据库。DBMS(database manage system) &#xf…

【JVM】简述类加载器及双亲委派机制

双亲委派模型&#xff0c;是加载class文件的一种机制。在介绍双亲委派模型之前&#xff0c;我需要先介绍几种类加载器&#xff08;Class Loader&#xff09;。 1&#xff0c;类加载器 Bootstrap&#xff0c;加载lib/rt.jar&#xff0c;charset.jar等中的核心类&#xff0c;由…

港口数据复杂不知道如何监控?来试试FineVis所展现的智慧港口看板

一、智慧港口是什么 智慧港口代表着港口建设的未来趋势和发展方向。以信息物理系统为框架&#xff0c;智慧港口通过创新应用高新技术&#xff0c;实现了物流供给方和需求方之间的沟通&#xff0c;并将它们融入集疏运一体化系统中。这种系统极大地提升了港口及其相关物流园区对…

ospf路由过滤及策略实验

目录 一、实验拓扑 二、实验要求 三、实验思路 四、实验步骤 1、配置IP 2、配置RIP协议和OSPF协议 3、在R2上做双向路由引入 &#xff08;1&#xff09;进入到rip协议的1进程中引入ospf &#xff08;2&#xff09;进入到ospf协议的1进程中引入rip 4、在R2上使用acl和…

逻辑回归实战 -- 是否通过考试

http://链接: https://pan.baidu.com/s/1-uy-69rkc4WjMpPj6iRDDw 提取码: e69y 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦 数据集下载链接 这是个二分类问题&#xff0c;通过x1,x2两个指标得出是否通过考试的结论。 逻辑回归的激活函数是sigmoid函数&…

【论文阅读】ChipNeMo中的数据集处理

前面总体学习了《ChipNeMo: Domain-Adapted LLMs for Chip Design》&#xff0c;然后又继续仔细看了论文中的领域适配分词和领域数据微调的预训练检索模型&#xff0c;对于数据集的处理&#xff0c;也需要仔细看一下。 提炼重点&#xff1a;1&#xff09;对于数据集&#xff0…

二维码门楼牌管理应用平台建设:创新社区管理模式

文章目录 前言一、二维码门楼牌管理应用平台的建设背景二、在线打卡功能的实现与意义三、查看浏览网格员在线打卡记录的重要性四、二维码门楼牌管理应用平台的未来展望五、结语 前言 随着信息技术的不断发展&#xff0c;社区管理正逐步迈向智能化、便捷化。二维码门楼牌管理应…

Databend 开源周报第 142 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 支持 WASM UDF …

Linux专栏01:Linux发展历史及背景介绍

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Linux专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Linux发展历史及背景介绍 编号&#xff1a;01 文章目录 Linux发展历…

在kuboard中添加k8s集群

1.登录kuboard后&#xff0c;点击添加集群面板 系统会跳转到k8s集群添加页面&#xff0c;按照页面提示输入自身的集群信息即可&#xff0c;此处没有什么难点。 添加成功后&#xff0c;点击集群面板&#xff0c;然后点击集群概要信息&#xff0c;就可以查看集群节点信息。 集群节…

C++-8

1.C中list容器实现 using namespace std;int main() {list<int> l1;l1.assign(2,3);list<int>::iterator n l1.begin();for(n l1.begin();n!l1.end();n){cout << *n << "\t";}cout << endl;cout << "last one " &l…

【书生浦语第二期实战营学习笔记作业(七)】

课程文档&#xff1a;https://github.com/InternLM/Tutorial/blob/camp2/opencompass/readme.md 课程作业&#xff1a;https://github.com/InternLM/Tutorial/blob/camp2/opencompass/homework.md OpenCompass 大模型评测实战 1. 大模型的评测1.1 大模型评测如何促进发展1.2 大…

Flink checkpoint 源码分析- Flink Checkpoint 触发流程分析

序言 最近因为工作需要在阅读flink checkpoint处理机制&#xff0c;学习的过程中记录下来&#xff0c;并分享给大家。也算是学习并记录。 目前公司使用的flink版本为1.11。因此以下的分析都是基于1.11版本来的。 在分享前可以简单对flink checkpoint机制做一个大致的了解。 …

城会玩,Selenium+Docker成功解决这一大难题

01、需求背景 日常测试中会遇到对web应用进行UI自动化的测试场景&#xff0c;一般常用的工具是使用Selenium&#xff0c;一套简单的UI自动化架构如下&#xff1a; 上图即为简单搭建的一套UI自动化测试架构&#xff0c;但 串行执行测试用例&#xff1a; 一台机器只能安装一个…

[Meachines][Hard]FormulaX

Main $ nmap -sC -sV 10.10.11.6 --min-rate 1000 # echo 10.10.11.6 formula.htb>>/etc/hosts 创建一个新用户,登录 来到聊天窗口,发现普通用户无法使用 来到联系页面,测试跨站 {"first_name":"<img srchttp://10.10.16.6/s-h4ck13/>",&qu…

form1弹出子窗体form2,拖动子窗体判断是否离开父窗体区域,含源码(学习笔记)

一、效果&#xff08;进入和离开&#xff09; 子窗体到达父窗体边缘时变色。 二、代码分析 判断父窗体的目的&#xff0c;可以控制子窗体要随父窗体走。上面代码需要加以处理。 如&#xff1a;this.Location new Point(parentPoint.X distanceFromEdge, this.Location.Ydis…

给rwkv_pytorch增加rag

RAG 参考地址语义模型地址选择该模型使用方法方法二安装方法下载模型到本地材料材料处理语义分割计算得分根据得分 分割文本 构建向量数据库问答匹配问答整合 参考地址 RAG简单教程 分割策略 语义模型地址 hf 选择该模型 gte 使用方法 import torch.nn.functional as F…

AQS共享模式之CyclicBarrier

概念&#xff1a;CyclicBarrier翻译为循环(屏障/栅栏)&#xff0c;当一组线程到达一个屏障&#xff08;同步点&#xff09;时被阻塞&#xff0c;直到最后一个线程到达屏障时&#xff0c;屏障才会打开&#xff0c;所有被屏障拦截的线程才会继续工作。 设计目的&#xff1a;和Co…

当你老了:献给40岁以上还在求职的朋友

怪盗团团长按&#xff1a;本文作者是我的一位老朋友&#xff0c;他已经年过四十&#xff0c;在国内职场&#xff0c;算是不折不扣的中老年人了。难能可贵的是&#xff0c;最近他还换了工作&#xff0c;去了一个自己不熟悉的新行业奋斗。 我一直很纳闷&#xff0c;为何在中国&am…