ORB-SLAM2学习笔记6之D435i双目IR相机运行ROS版ORB-SLAM2并发布位姿pose的rostopic

文章目录

  • 0 引言
  • 1 D435i相机配置
  • 2 新增发布双目位姿功能
    • 2.1 新增d435i_stereo.cc代码
    • 2.2 修改CMakeLists.txt
    • 2.3 新增配置文件D435i.yaml
  • 3 编译运行和结果
    • 3.1 编译运行
    • 3.2 结果
    • 3.3 可能出现的问题

0 引言

ORB-SLAM2学习笔记1已成功编译安装ROS版本ORB-SLAM2到本地,以及ORB-SLAM2学习笔记5成功用EuRoc、TUM、KITTI开源数据来运行ROSORB-SLAM2,并生成轨迹。但实际ROS视觉SLAM工程落地时,一般搭配传感器实时发出位姿poserostopic,本篇就以D435i相机的双目IR相机作为输入,运行ROSORB-SLAM2,最后发出poserostopic

👉 ORB-SLAM2 github: https://github.com/raulmur/ORB_SLAM2

本文系统环境:

  • Ubuntu18.04
  • ROS-melodic
  • ROS版ORB-SLAM2
  • D435i相机和驱动

1 D435i相机配置

默认已在Ubuntu18.04系统上安装ROS版的D435i相机驱动,比如本文驱动安装目录~/catkin_rs/src/realsense-ros

安装后,默认是不开双目IR相机,需要自行修改配置:

# 激活环境
source /catkin_rs/devel/setup.bash
# roscd 进入到配置文件目录下
roscd realsense2_camera/launch/
# 打开 rs_camera.launch 配置文件进行修改
vim rs_camera.launch

打开后,主要是如下的字段需要修改成 true,这样就能打开双目IR相机,分辨率也可自行修改。

  <arg name="infra_width"         default="848"/>
  <arg name="infra_height"        default="480"/>
  <arg name="enable_infra"        default="true"/>
  <arg name="enable_infra1"       default="true"/>
  <arg name="enable_infra2"       default="true"/>
...

2 新增发布双目位姿功能

2.1 新增d435i_stereo.cc代码

ORB_SLAM2/Examples/ROS/ORB_SLAM2/src/目录下新增d435i_stereo.cc 代码文件,如下代码片段来增加:

#include<iostream>
#include<algorithm>
#include<fstream>
#include<chrono>

#include<tf/transform_broadcaster.h>
#include "../../../include/Converter.h"
#include <nav_msgs/Path.h>

#include <ros/ros.h>
#include <cv_bridge/cv_bridge.h>
#include <message_filters/subscriber.h>
#include <message_filters/time_synchronizer.h>
#include <message_filters/sync_policies/approximate_time.h>

#include<opencv2/core/core.hpp>

#include"../../../include/System.h"

using namespace std;

class ImageGrabber
{
public:
    ImageGrabber(ORB_SLAM2::System* pSLAM):mpSLAM(pSLAM){}

    void GrabStereo(const sensor_msgs::ImageConstPtr& msgLeft,const sensor_msgs::ImageConstPtr& msgRight);

    ORB_SLAM2::System* mpSLAM;
    bool do_rectify;
    cv::Mat M1l,M2l,M1r,M2r;
};

ros::Publisher pose_pub;
nav_msgs::Path stereo_path;
ros::Publisher stereo_path_pub;

int main(int argc, char **argv)
{
    ros::init(argc, argv, "RGBD");
    ros::start();

    if(argc != 4)
    {
        cerr << endl << "Usage: rosrun ORB_SLAM2 Stereo path_to_vocabulary path_to_settings do_rectify" << endl;
        ros::shutdown();
        return 1;
    }    

    // Create SLAM system. It initializes all system threads and gets ready to process frames.
    ORB_SLAM2::System SLAM(argv[1],argv[2],ORB_SLAM2::System::STEREO,true);

    ImageGrabber igb(&SLAM);

    stringstream ss(argv[3]);
	ss >> boolalpha >> igb.do_rectify;

    if(igb.do_rectify)
    {      
        // Load settings related to stereo calibration
        cv::FileStorage fsSettings(argv[2], cv::FileStorage::READ);
        if(!fsSettings.isOpened())
        {
            cerr << "ERROR: Wrong path to settings" << endl;
            return -1;
        }

        cv::Mat K_l, K_r, P_l, P_r, R_l, R_r, D_l, D_r;
        fsSettings["LEFT.K"] >> K_l;
        fsSettings["RIGHT.K"] >> K_r;

        fsSettings["LEFT.P"] >> P_l;
        fsSettings["RIGHT.P"] >> P_r;

        fsSettings["LEFT.R"] >> R_l;
        fsSettings["RIGHT.R"] >> R_r;

        fsSettings["LEFT.D"] >> D_l;
        fsSettings["RIGHT.D"] >> D_r;

        int rows_l = fsSettings["LEFT.height"];
        int cols_l = fsSettings["LEFT.width"];
        int rows_r = fsSettings["RIGHT.height"];
        int cols_r = fsSettings["RIGHT.width"];

        if(K_l.empty() || K_r.empty() || P_l.empty() || P_r.empty() || R_l.empty() || R_r.empty() || D_l.empty() || D_r.empty() ||
                rows_l==0 || rows_r==0 || cols_l==0 || cols_r==0)
        {
            cerr << "ERROR: Calibration parameters to rectify stereo are missing!" << endl;
            return -1;
        }

        cv::initUndistortRectifyMap(K_l,D_l,R_l,P_l.rowRange(0,3).colRange(0,3),cv::Size(cols_l,rows_l),CV_32F,igb.M1l,igb.M2l);
        cv::initUndistortRectifyMap(K_r,D_r,R_r,P_r.rowRange(0,3).colRange(0,3),cv::Size(cols_r,rows_r),CV_32F,igb.M1r,igb.M2r);
    }

    ros::NodeHandle nh;

    //message_filters::Subscriber<sensor_msgs::Image> left_sub(nh, "/camera/left/image_raw", 1);
    //message_filters::Subscriber<sensor_msgs::Image> right_sub(nh, "camera/right/image_raw", 1);
    message_filters::Subscriber<sensor_msgs::Image> left_sub(nh, "/camera/infra1/image_rect_raw", 1);
    message_filters::Subscriber<sensor_msgs::Image> right_sub(nh, "/camera/infra2/image_rect_raw", 1);
    typedef message_filters::sync_policies::ApproximateTime<sensor_msgs::Image, sensor_msgs::Image> sync_pol;
    message_filters::Synchronizer<sync_pol> sync(sync_pol(10), left_sub,right_sub);
    sync.registerCallback(boost::bind(&ImageGrabber::GrabStereo,&igb,_1,_2));
    pose_pub = nh.advertise<geometry_msgs::PoseStamped>("ORB_SLAM/pose", 5);

    stereo_path_pub = nh.advertise<nav_msgs::Path>("ORB_SLAM/path",10);


    ros::spin();
    // Stop all threads
    SLAM.Shutdown();

    // Save camera trajectory
    SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory_TUM_Format.txt");
    SLAM.SaveTrajectoryTUM("FrameTrajectory_TUM_Format.txt");
    SLAM.SaveTrajectoryKITTI("FrameTrajectory_KITTI_Format.txt");

    ros::shutdown();

    return 0;
}

void ImageGrabber::GrabStereo(const sensor_msgs::ImageConstPtr& msgLeft,const sensor_msgs::ImageConstPtr& msgRight)
{
    // Copy the ros image message to cv::Mat.
    cv_bridge::CvImageConstPtr cv_ptrLeft;
    try
    {
        cv_ptrLeft = cv_bridge::toCvShare(msgLeft);
    }
    catch (cv_bridge::Exception& e)
    {
        ROS_ERROR("cv_bridge exception: %s", e.what());
        return;
    }

    cv_bridge::CvImageConstPtr cv_ptrRight;
    try
    {
        cv_ptrRight = cv_bridge::toCvShare(msgRight);
    }
    catch (cv_bridge::Exception& e)
    {
        ROS_ERROR("cv_bridge exception: %s", e.what());
        return;
    }

    if(do_rectify)
    {
        cv::Mat imLeft, imRight;
        cv::remap(cv_ptrLeft->image,imLeft,M1l,M2l,cv::INTER_LINEAR);
        cv::remap(cv_ptrRight->image,imRight,M1r,M2r,cv::INTER_LINEAR);
        mpSLAM->TrackStereo(imLeft,imRight,cv_ptrLeft->header.stamp.toSec()).clone();

    }
    else
    {
        cv::Mat Tcw;
        Tcw = mpSLAM->TrackStereo(cv_ptrLeft->image,cv_ptrRight->image,cv_ptrLeft->header.stamp.toSec());

        geometry_msgs::PoseStamped pose;
        pose.header.stamp = ros::Time::now();
        pose.header.frame_id ="path";

        cv::Mat Rwc = Tcw.rowRange(0,3).colRange(0,3).t(); // Rotation information
        cv::Mat twc = -Rwc*Tcw.rowRange(0,3).col(3); // translation information
        vector<float> q = ORB_SLAM2::Converter::toQuaternion(Rwc);

        tf::Transform new_transform;
        new_transform.setOrigin(tf::Vector3(twc.at<float>(0, 0), twc.at<float>(0, 1), twc.at<float>(0, 2)));
        tf::Quaternion quaternion(q[0], q[1], q[2], q[3]);
        new_transform.setRotation(quaternion);
        tf::poseTFToMsg(new_transform, pose.pose);
        pose_pub.publish(pose);
        
        stereo_path.header.frame_id="path";
        stereo_path.header.stamp=ros::Time::now();
        stereo_path.poses.push_back(pose);
        stereo_path_pub.publish(stereo_path);

    }
}

上述代码已经写入了D435i相机双目IR相机发出的topic,分别是左目/camera/infra1/image_rect_raw,右目/camera/infra2/image_rect_raw;发布的位姿posetopicORB_SLAM/pose,如果用的不是D435i,比如zed双目相机,可以自行修改。

2.2 修改CMakeLists.txt

由于新增了发布功能的代码文件,那对应的CMakeLists.txt也需要新增对应的编译和链接的设置,如下所示,在ORB_SLAM2/Examples/ROS/ORB_SLAM2/CMakeLists.txt 文件的结尾新增:

# Node for d435i_stereo camera
# 设置了编译的代码文件`d435i_stereo.cc`和可执行文件的名字
rosbuild_add_executable(D435i_Stereo
src/d435i_stereo.cc
)

target_link_libraries(D435i_Stereo
${LIBS}
)

2.3 新增配置文件D435i.yaml

同时也要新增对应的配置文件D435i.yaml,可新增到ORB_SLAM2/Examples/Stereo/D435i.yaml,文件类似ORB_SLAM2/Examples/Stereo/EuRoC.yaml,如下所示,主要修改第一部分的内参部分(fx,fy,cx,cy)即可,相机的内参获取方法,可通过roslaunch realsense2_camera rs_camera.launch启动相机后,再通过rostopic echo /camera/infra1/camera_info来获取。

%YAML:1.0

#--------------------------------------------------------------------------------------------
# Camera Parameters. Adjust them!
#--------------------------------------------------------------------------------------------

# Camera calibration and distortion parameters (OpenCV) 
Camera.fx: 427.03680419921875
Camera.fy: 427.03680419921875
Camera.cx: 427.3993835449219
Camera.cy: 236.4639129638672

Camera.k1: 0.0
Camera.k2: 0.0
Camera.p1: 0.0
Camera.p2: 0.0

Camera.width: 848
Camera.height: 480

# Camera frames per second 
Camera.fps: 15.0

# stereo baseline times fx
Camera.bf: 50.0

# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)
Camera.RGB: 1

# Close/Far threshold. Baseline times.
ThDepth: 35

#--------------------------------------------------------------------------------------------
# Stereo Rectification. Only if you need to pre-rectify the images.
# Camera.fx, .fy, etc must be the same as in LEFT.P
#--------------------------------------------------------------------------------------------
LEFT.height: 480
LEFT.width: 752
LEFT.D: !!opencv-matrix
   rows: 1
   cols: 5
   dt: d
   data:[-0.28340811, 0.07395907, 0.00019359, 1.76187114e-05, 0.0]
LEFT.K: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [458.654, 0.0, 367.215, 0.0, 457.296, 248.375, 0.0, 0.0, 1.0]
LEFT.R:  !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0.999966347530033, -0.001422739138722922, 0.008079580483432283, 0.001365741834644127, 0.9999741760894847, 0.007055629199258132, -0.008089410156878961, -0.007044357138835809, 0.9999424675829176]
LEFT.P:  !!opencv-matrix
   rows: 3
   cols: 4
   dt: d
   data: [435.2046959714599, 0, 367.4517211914062, 0,  0, 435.2046959714599, 252.2008514404297, 0,  0, 0, 1, 0]

RIGHT.height: 480
RIGHT.width: 752
RIGHT.D: !!opencv-matrix
   rows: 1
   cols: 5
   dt: d
   data:[-0.28368365, 0.07451284, -0.00010473, -3.555907e-05, 0.0]
RIGHT.K: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [457.587, 0.0, 379.999, 0.0, 456.134, 255.238, 0.0, 0.0, 1]
RIGHT.R:  !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0.9999633526194376, -0.003625811871560086, 0.007755443660172947, 0.003680398547259526, 0.9999684752771629, -0.007035845251224894, -0.007729688520722713, 0.007064130529506649, 0.999945173484644]
RIGHT.P:  !!opencv-matrix
   rows: 3
   cols: 4
   dt: d
   data: [435.2046959714599, 0, 367.4517211914062, -47.90639384423901, 0, 435.2046959714599, 252.2008514404297, 0, 0, 0, 1, 0]

#--------------------------------------------------------------------------------------------
# ORB Parameters
#--------------------------------------------------------------------------------------------

# ORB Extractor: Number of features per image
ORBextractor.nFeatures: 1200

# ORB Extractor: Scale factor between levels in the scale pyramid 	
ORBextractor.scaleFactor: 1.2

# ORB Extractor: Number of levels in the scale pyramid	
ORBextractor.nLevels: 8

# ORB Extractor: Fast threshold
# Image is divided in a grid. At each cell FAST are extracted imposing a minimum response.
# Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST
# You can lower these values if your images have low contrast			
ORBextractor.iniThFAST: 20
ORBextractor.minThFAST: 7

#--------------------------------------------------------------------------------------------
# Viewer Parameters
#--------------------------------------------------------------------------------------------
Viewer.KeyFrameSize: 0.05
Viewer.KeyFrameLineWidth: 1
Viewer.GraphLineWidth: 0.9
Viewer.PointSize:2
Viewer.CameraSize: 0.08
Viewer.CameraLineWidth: 3
Viewer.ViewpointX: 0
Viewer.ViewpointY: -0.7
Viewer.ViewpointZ: -1.8
Viewer.ViewpointF: 500

3 编译运行和结果

3.1 编译运行

全部修改后,可回到ORB_SLAM2工程目录下,重新执行命令进行编译:

# chmod 之前执行过可忽略
chmod +x build_ros.sh
./build_ros.sh

编译完成后,首先连接D435i相机到电脑上(USB3.0),然后执行命令启动D435i相机:

source /catkin_rs/devel/setup.bash
roslaunch realsense2_camera rs_camera.launch

然后再新开终端,执行D435i_Stereo

# ORB_SLAM2工程目录下
rosrun ORB_SLAM2 D435i_Stereo Vocabulary/ORBvoc.txt Examples/Stereo/D435i.yaml false

3.2 结果

执行上述命令后,在加载完词袋后,会自动打开两个可视化界面:

ORB-SLAM2: Current Frame
请添加图片描述

ORB-SLAM2: Map Viewer
请添加图片描述

可以用rostopic list可查看到已经发出的位姿topic :

/ORB_SLAM/path
/ORB_SLAM/pose

也可以用rostopic echo /ORB_SLAM/pose查看具体的位姿信息:

header: 
  seq: 3287
  stamp: 
    secs: 0
    nsecs:         0
  frame_id: "path"
pose: 
  position: 
    x: 0.0335485860705
    y: -0.0102641582489
    z: -0.0411500893533
  orientation: 
    x: -0.042415473676
    y: -0.00852415898276
    z: -0.015283392766
    w: 0.998946787478

至此,成功用D435i相机的双目IR相机作为输入,运行ROSORB-SLAM2,最后发出poserostopic

3.3 可能出现的问题

问题1:

如果如下所示的问题,启动后很快自动关闭,可能是特征点太少的原因,调整相机的朝向,保证相机视野范围内多一点特征:

terminate called after throwing an instance of 'cv::Exception'
  what():  /build/opencv-L2vuMj/opencv-3.2.0+dfsg/modules/core/src/matrix.cpp:483: error: (-215) 0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows in function Mat

Aborted (core dumped)

Reference:

  • https://github.com/raulmur/ORB_SLAM2



须知少时凌云志,曾许人间第一流。



⭐️👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍🌔

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/58420.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis面试题2

Redis面试题-2 10、统计高并发网站每个网页每天的 UV 数据&#xff0c;结合Redis你会如何实现&#xff1f; 选用方案&#xff1a;HyperLogLog 如果统计 PV 那非常好办&#xff0c;给每个网页一个独立的 Redis 计数器就可以了&#xff0c;这个计数器的 key 后缀加上当天的日期…

【eNSP】静态路由

【eNSP】静态路由 原理网关路由表 实验根据图片连接模块配置路由器设备R1R2R3R4 配置PC的IP地址、掩码、网关PC1PC2PC3 配置静态路由查看路由表R1R2R3R4测试能否通信 原理 网关 网关与路由器地址相同&#xff0c;一般路由地址为.1或.254。 网关是当电脑发送的数据的目标IP不在…

芯片制造详解.光刻技术与基本流程.学习笔记(四)

本篇文章是看了以下视频后的笔记提炼&#xff0c;欢迎各位观看原视频&#xff0c;这里附上地址 芯片制造详解04&#xff1a;光刻技术与基本流程&#xff5c;国产之路不容易 芯片制造详解.光刻技术与基本流程.学习笔记 四 一、引子二、光刻(1).光掩膜(2).光刻机(3).光刻胶(4).挖…

【深度学习】High-Resolution Image Synthesis with Latent Diffusion Models,论文

13 Apr 2022 论文&#xff1a;https://arxiv.org/abs/2112.10752 代码&#xff1a;https://github.com/CompVis/latent-diffusion 文章目录 PS基本概念运作原理 AbstractIntroductionRelated WorkMethodPerceptual Image CompressionLatent Diffusion Models Conditioning Mec…

什么是线程?为什么需要线程?和进程的区别?

目录 前言 一.线程是什么&#xff1f; 1.1.为什么需要线程 1.2线程的概念 1.3线程和进程的区别 二.线程的生命周期 三.认识多线程 总结 &#x1f381;个人主页&#xff1a;tq02的博客_CSDN博客-C语言,Java,Java数据结构领域博主 &#x1f3a5; 本文由 tq02 原创&#xf…

深入探索Vue.js核心技术与跨平台开发uni-app实战

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 前言 在当今Web应用不断…

UGUI图文混排超链接

目录 一、LinkSpriteText二、EmojiText1、EmojiText2、支持超链接的EmojiText出现的问题 三、通用版EmojiText1、使用方法 之前做web项目有个需求需要通过某种方式打开试题中所提到的关键字介绍,当时是在试题旁边放个小按钮点击打开,后来要求把图标放在题干中,或者直接点击关键…

【C++奇遇记】函数探幽(上)

&#x1f3ac; 博客主页&#xff1a;博主链接 &#x1f3a5; 本文由 M malloc 原创&#xff0c;首发于 CSDN&#x1f649; &#x1f384; 学习专栏推荐&#xff1a;LeetCode刷题集 数据库专栏 初阶数据结构 &#x1f3c5; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如…

誉天程序员-瀑布模型-敏捷开发模型-DevOps模型比较

文章目录 2. 项目开发-开发方式2.1. 瀑布开发模型2.2. 敏捷开发模型2.3. DevOps开发模型2.4. 区别 自增主键策略1、数据库支持主键自增自增和uuid方案优缺点 2. 项目开发-开发方式 由传统的瀑布开发模型、敏捷开发模型&#xff0c;一跃升级到DevOps开发运维一体化开发模型。 …

swagger相关问题

swagger相关问题 swagger版本为&#xff1a; <dependency><groupId>com.github.xiaoymin</groupId><artifactId>swagger-bootstrap-ui</artifactId><version>1.9.6</version> </dependency> <dependency><groupId&…

Grafana集成prometheus(4.Grafana添加预警)

上文已经完成了grafana对prometheus的集成及数据导入&#xff0c;本文主要记录grafana的预警功能&#xff08;以内存为例&#xff09; 添加预警 添加入口&#xff08;2个&#xff09; databorard面板点击edit&#xff0c;下方有个Alert的tab&#xff0c;创建Alert rules依赖…

IDEA偶尔编译的时候不识别lombok

偶尔IDEA启动项目的时候会识别不到lombok,识别不到get()跟set()方法 方案 在settings添加下面代码 -Djps.track.ap.dependenciesfalse

自然语言处理学习笔记(二)————语料库与开源工具

目录 1.语料库 2.语料库建设 &#xff08;1&#xff09;规范制定 &#xff08;2&#xff09;人员培训 &#xff08;3&#xff09;人工标注 3.中文处理中的常见语料库 &#xff08;1&#xff09;中文分词语料库 &#xff08;2&#xff09;词性标注语料库 &#xff08;3…

我理解的音响设备音频放大器地线环路共地回路造成交流声干扰哼声的分析,信号接地,工业仪表接地的问题

我理解的音响设备音频放大器地线环路共地回路造成交流声干扰哼声的分析&#xff0c;信号接地&#xff0c;工业仪表接地的问题 wxleasyland 2023.8 一、地线环路造成交流声哼声 家里插座中有一个的PE地线&#xff0c;相当于大地。 设备1的“信号地”接到家里三脚插座的PE地线…

【雕爷学编程】MicroPython动手做(39)——机器视觉之图像基础2

MixPY——让爱(AI)触手可及 MixPY布局 主控芯片&#xff1a;K210&#xff08;64位双核带硬件FPU和卷积加速器的 RISC-V CPU&#xff09; 显示屏&#xff1a;LCD_2.8寸 320*240分辨率&#xff0c;支持电阻触摸 摄像头&#xff1a;OV2640&#xff0c;200W像素 扬声器&#…

unity TextMeshPro 富文本

<b>粗体标签</b> <i>斜体标签</i> <u>下划线标签</u> <s>删除线标签</s> <sup>上标标签</sup>前面后边上标签 5<sup>。</sup>C <sub>下标标签&#xff0c;如&#xff1a;</sub>H<sub&…

【练】要求定义一个全局变量 char buf[] = “1234567“,创建两个线程,不考虑退出条件,打印buf

要求定义一个全局变量 char buf[] "1234567"&#xff0c;创建两个线程&#xff0c;不考虑退出条件&#xff0c;另&#xff1a; A线程循环打印buf字符串&#xff0c;B线程循环倒置buf字符串&#xff0c;即buf中本来存储1234567&#xff0c;倒置后buf中存储7654321. 不…

动手学深度学习—卷积神经网络(原理解释+代码详解)

目录 1. 从全连接层到卷积层2. 图像卷积2.1 互相关运算2.2 卷积层2.3 图像中目标的边缘检测2.4 学习卷积核2.5 特征映射和感受野 3. 填充和步幅3.1 填充3.2 步幅 4. 多输入多输出通道4.1 多输入通道4.2 多输出通道4.3 11卷积核 5. 汇聚层5.1 最大汇聚层和平均汇聚层5.2 填充和步…

c 语言解析 时间字符串

#include <iostream> #include <ctime>int main(int argc, char *argv[]) {struct tm timeinfo;char cur_time[] "current time: 2021-09-06 23:50:13";// 解析时间到timeinfo中strptime(cur_time, "current time: %Y-%m-%d %H:%M:%S", &…