动手学深度学习—卷积神经网络(原理解释+代码详解)

目录

  • 1. 从全连接层到卷积层
  • 2. 图像卷积
    • 2.1 互相关运算
    • 2.2 卷积层
    • 2.3 图像中目标的边缘检测
    • 2.4 学习卷积核
    • 2.5 特征映射和感受野
  • 3. 填充和步幅
    • 3.1 填充
    • 3.2 步幅
  • 4. 多输入多输出通道
    • 4.1 多输入通道
    • 4.2 多输出通道
    • 4.3 1×1卷积核
  • 5. 汇聚层
    • 5.1 最大汇聚层和平均汇聚层
    • 5.2 填充和步幅
    • 5.3 多个通道

1. 从全连接层到卷积层

  • 多层感知机对图像处理是百万维度,模型不可实现。
  • 如果要在图片中找到某个物体,寻找方法应该和物体位置无关。

适合计算机视觉的神经网络架构:

  1. 平移不变性:不管检测对象出现在图像中的哪个位置,神经网络前几层应该对相同图像区域有相似的反应。
  2. 局部性:神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系。

2. 图像卷积

2.1 互相关运算

严格来说,卷积层所表达的运算其实是互相关运算。

不同颜色所选的区域与同一个卷积核做互相关运算,最后得到输出。
在这里插入图片描述在这里插入图片描述
同理,卷积核滑动进行互相关运算。最终得到高度为2,宽度为2的输出。
在这里插入图片描述

输出大小:在这里插入图片描述

"""
    定义corr2d函数:
    1、该函数接受输入张量X和卷积核张量K,并返回输出张量Y
    2、输出大小 = 输入大小n(k)×n(w) - 卷积核大小k(h)×k(w)
    3、即:(n(k)-k(h)+1) × (n(w)-k(w)+1 )
"""
import torch
from torch import nn
from d2l import torch as d2l

def corr2d(X, K): #@save
    """计算二维互相关运算"""
    # 卷积核的高度h和宽度w,K指卷积核Kernel
    h, w = K.shape
    
    # 设置输出Y的大小,用0进行填充
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    
    # 对局部区域做互相关运算
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

对上图进行验证
在这里插入图片描述

2.2 卷积层

定义卷积层Conv2D:

  1. 卷积层对输入和卷积核权重进行互相关运算;
  2. 并在添加标量偏置之后产生输出。
"""
    定义卷积层Conv2D:
    1、卷积层对输入和卷积核权重进行互相关运算;
    2、并在添加标量偏置之后产生输出。
"""
class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        
        # 设置权重
        self.weight = nn.Parameter(torch.rand(kernel_size))
        
        # 设置偏置
        self.bias = nn.Parameter(torch.zeros(1))
     
    # corr2d(X, K)
    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

2.3 图像中目标的边缘检测

# 卷积层的一个简单应用:通过找到像素变化的位置,来检测图像中不同颜色的边缘。
# 1、构造一个6×8像素的黑白图像
X = torch.ones((6, 8))
X[:, 2:6] = 0
X

在这里插入图片描述

# 2、我们构造一个高度为1、宽度为2的卷积核K(水平相邻元素相同输出为0)
K = torch.tensor([[1.0, -1.0]])

Y = corr2d(X, K)
Y

在这里插入图片描述

2.4 学习卷积核

"""
    由X生成Y的卷积核:
    1、构造一个卷积层,并将其卷积核初始化为随机张量;
    2、在每次迭代中,比较Y与卷积层输出的平方误差,然后计算梯度来更新卷积核;
    3、使用内置的二维卷积层,并忽略偏置。
"""
# 构造一个二维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1, 1, kernel_size=(1, 2), bias=False)

# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2 # 学习率

# 进行训练,轮数为10。计算梯度并进行更新,输出loss
for i in range(10):
    # 定义损失函数:交叉熵损失
    Y_hat = conv2d(X)
    l = (Y_hat - Y) ** 2
    
    # 梯度置零
    conv2d.zero_grad()
    l.sum().backward()
    # 迭代卷积核
    # 梯度更新:w = w - lr * w'
    conv2d.weight.data[:] -= lr * conv2d.weight.grad
    # 每隔2轮输出一次
    if(i + 1) % 2 ==0:
        print(f'epoch{i+1}, loss{l.sum():.3f}')

这里可以看到学习的卷积核接近之前边缘检测的卷积核。
在这里插入图片描述

2.5 特征映射和感受野

  1. 输出的卷积层有时被称为特征映射。
  2. 在卷积神经网络中,对于某一层的任意元素x,其感受野是指在前向传播期间可能影响x计算的所有元素。

3. 填充和步幅

  • 问题一:应用了连续卷积,最终得到的输出远小于输入大小,使得原始图像的边界丢失了许多有用信息,我们希望输入大小和输出大小相同?
    解决填充:在输入图像的边界填充元素(通常填充元素是0)
  • 问题二:有时原始的输入分辨率十分冗余,我们可能希望大幅降低图像的宽度和高度?
    解决步幅:设置卷积核滑动的步幅来减少采样次数
  • 问题三:卷积核为什么一般选择奇数
    解决:保持空间维度的同时,我们可以在顶部和底部填充相同数量的行,在左侧和右侧填充相同数量的列。

3.1 填充

填充(padding):在输入图像的边界填充元素(通常填充元素是0)

在这里插入图片描述在这里插入图片描述

"""
    填充:
    1、输入给定8×8,输出要求8×8
    2、卷积核的大小为3×3,所有侧边填充1个像素
"""
import torch
from torch import nn

# 为了方便起见,我们定义了一个计算卷积层的函数。
# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):
    # 这里的(1,1)表示批量大小和通道数都是1
    X = X.reshape((1, 1) + X.shape)
    Y = conv2d(X)
    
    # 省略前两个维度:批量大小和通道(1, 1, 8, 8)
    return Y.reshape(Y.shape[2:])

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
print(X)
print(conv2d)
print(comp_conv2d(conv2d, X))
comp_conv2d(conv2d, X).shape

在这里插入图片描述

# 卷积核为5×3时,为了使输入和输出相同,高度填充2,宽度填充1
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

在这里插入图片描述

3.2 步幅

步幅(stride):每次滑动元素的数量

在这里插入图片描述

"""
    步幅:
    1、每次滑动元素的数量;
    2、为了高效计算或是缩减采样次数,卷积窗口可以跳过中间位置,每次滑动多个元素。
"""
# 将高度和宽度的步幅设置为2,从而将输入的高度和宽度减半
# (8 + 2 - 3) / 2 = 4
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape

在这里插入图片描述

4. 多输入多输出通道

4.1 多输入通道

当输入包含多个通道时,需要构造一个与输入数据具有相同输入通道数的卷积核,以便与输入数据进行互相关运算。

在这里插入图片描述

import torch
from d2l import torch as d2l

def corr2d_multi_in(X, K):
    # 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起
    return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

# 构造输入张量X和核张量K,以验证互相关运算的输出
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0 ,1.0], [2.0, 3.0]],[[1.0, 2.0], [3.0, 4.0]]])

corr2d_muti_in(X, K)

在这里插入图片描述

4.2 多输出通道

多输出通道:

  1. 在最流行的神经网络架构中,随着神经网络层数的加深,我们常会增加输出通道的维数,通过减少空间分辨率以获得更大的通道深度。
  2. 将每个通道看作对不同特征的响应。
# 实现一个计算多个通道的输出的互相关函数
def corr2d_multi_in_out(X, K):
    # 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。
    # 最后将所有结果都叠加在一起
    return torch.stack([corr2d_multi_in(X, k) for k in K], 0)

# 通过将核张量K与K+1(K中每个元素加1)和K+2连接起来,构造了一个具有3个输出通道的卷积核。
K = torch.stack((K, K + 1, K + 2), 0)

# (输出通道数,输入通道数,高度,宽度)
K.shape

在这里插入图片描述

4.3 1×1卷积核

  • 1×1卷积核被经常用来改变通道,相当于全连接层
  • 可以对输入和输出的形状进行调整
# 使用全连接层实现1×1卷积
def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    # K:(输出通道,输入通道,高度,宽度)
    c_o = K.shape[0]
    X = X.reshape((c_i, h * w))
    K = K.reshape((c_o, c_i))
    # 全连接层中的矩阵乘法
    Y = torch.matmul(K, X)
    return Y.reshape((c_o, h, w))

X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))

Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6
print(Y1)
print(Y2)

在这里插入图片描述

5. 汇聚层

通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有优势保留在中间层。
汇聚(pooling)层(也叫做池化层):

  1. 降低卷积层对位置的敏感性
  2. 降低对空间降采样表示的敏感性

5.1 最大汇聚层和平均汇聚层

汇聚层与卷积层的原理大体相似,只不过把互相关运算换成求最大值或者求平均值

在这里插入图片描述
在这里插入图片描述

# 最大汇聚层和平均汇聚层
"""
    定义汇聚层:
    1、设置汇聚层与输出的大小
    2、设置模式:大汇聚层和平均汇聚层
"""
import torch
from torch import nn
from d2l import torch as d2l

# 默认为最大汇聚层
def pool2d(X, pool_size, mode='max'):
    # 获取汇聚层的高度和宽度
    p_h, p_w = pool_size
    
    # 设置输出层Y的高度和宽度
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    
    # 进行遍历,相当于对矩阵的局部区域[i:i+p_h, j:j+p_w]求最大值/平均值
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            if mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

# 构建输入张量X,验证二维最大汇聚层输出
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
print(X)
print('最大汇聚层:\n', pool2d(X, (2, 2)))
print('平均汇聚层:\n', pool2d(X, (2, 2), 'avg'))
# print(f'最大汇聚层:{'\n'+pool2d(X, (2, 2))}')
# print(f'平均汇聚层:{pool2d(X, (2, 2), 'avg')}') 

在这里插入图片描述

5.2 填充和步幅

与卷积层一样,汇聚层也可以改变输出形状

# 构造了一个输入张量X,它有四个维度,其中样本数和通道数都是1
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X

在这里插入图片描述

5.3 多个通道

多个通道:

  1. 在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总
  2. 汇聚层的输出通道数与输入通道数相同。
"""
    多个通道:
    1、在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。
    2、汇聚层的输出通道数与输入通道数相同。
"""
X = torch.cat((X, X + 1), 1)
X
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/58390.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

c 语言解析 时间字符串

#include <iostream> #include <ctime>int main(int argc, char *argv[]) {struct tm timeinfo;char cur_time[] "current time: 2021-09-06 23:50:13";// 解析时间到timeinfo中strptime(cur_time, "current time: %Y-%m-%d %H:%M:%S", &…

【快应用】adbutton如何直接下载广告而不跳落地页再下载

【关键词】 原生广告、adbutton、下载 【问题背景】 快应用中的原生广告推出了adbutton组件来直接下载广告app&#xff0c;在使用的时候&#xff0c;点击adbutton按钮的安装文案&#xff0c;不是直接下载广告app&#xff0c;而是跳转到落地页后直接下载&#xff0c;这种情形该…

Redis主从复制、哨兵机制、集群分片

目录 一.主从复制 1.概述 2.主从架构相比于单点架构的优势 3.主从复制原理和工作流程 第一次同步 第一阶段&#xff1a;建立链接、协商同步 第二阶段&#xff1a;主服务器同步数据给从服务器 第三阶段&#xff1a;主服务器发送新写操作命令给从服务器 基于长连接的命…

vscode 通过mongoose 连接mongodb atlas

了解mongodb 的项目结构 1.代表集群名称 > 2.代表数据库名称>3.代表每个 collection名称 三者范围为从大到小的关系 &#xff08;一对多&#xff09;。每个集群有不同的连接地址、用户信息&#xff08;Database Access&#xff09;、ip配置信息&#xff08;Network Acce…

Modbus TCP转Profinet网关modbus tcp转以太网

大家好&#xff0c;今天我们来聊一聊如何使用捷米特的Profinet转modbusTCP协议转换网关在博图上进行非透传型配置。 1, 首先&#xff0c;我们需要安装捷米特JM-TCP-PN的GSD文件&#xff0c;并根据现场设备情况配置modbusTCP地址。然后&#xff0c;在博图中添加该GSD文件&#x…

应用在测温仪中的数字温度传感芯片

测温仪&#xff08;thermometric indicator&#xff09;&#xff0c;是温度计的一种&#xff0c;用红外线传输数字的原理来感应物体表面温度&#xff0c;操作比较方便&#xff0c;特别是高温物体的测量。应用广泛&#xff0c;如钢铸造、炉温、机器零件、玻璃及室温、体温等各种…

一零六六、线程池、锁

线程池&#xff1a; 管理线程创建&#xff0c;销毁的一系列池子 如何创建线程池&#xff1f; ExecutorService executor Executors.newFixedThreadPool(n); 创建线程有多种方法&#xff0c;为何要用线程池&#xff1f; 减少性能开销,每次执行任务都新建线程造成cpu资源浪费…

Shell脚本学习-MySQL单实例和多实例启动脚本

已知MySQL多实例启动命令为&#xff1a; mysqld_safe --defaults-file/data/3306/my.cnf & 停止命令为&#xff1a; mysqladmin -uroot -pchang123 -S /data/3306/mysql.sock shutdown 请完成mysql多实例的启动脚本的编写&#xff1a; 问题分析&#xff1a; 要想写出脚…

MINIO安装(centos7)

步骤1&#xff1a;安装wget 在开始安装MinIO之前&#xff0c;需要安装wget命令行工具。可以使用以下命令在CentOS系统中安装wget&#xff1a; sudo yum install wget 步骤2&#xff1a;下载MinIO wget https://dl.minio.org.cn/server/minio/release/linux-amd64/minio 将下…

分布式应用:ELK企业级日志分析系统

目录 一、理论 1.ELK 2.ELK场景 3.完整日志系统基本特征 4.ELK 的工作原理 5.ELK集群准备 6.Elasticsearch部署&#xff08;在Node1、Node2节点上操作&#xff09; 7.Logstash 部署&#xff08;在 Apache 节点上操作&#xff09; 8.Kiabana 部署&#xff08;在 Node1 节点…

常用SQL语句总结

SQL语句 文章目录 SQL语句1 SQL语句简介2 DQL&#xff08;数据查询语句&#xff09;3 DML&#xff08;数据操纵语句&#xff09;4 DDL&#xff08;数据定义语句&#xff09;5 DCL&#xff08;数据控制语句&#xff09;6 TCL&#xff08;事务控制语句&#xff09; 1 SQL语句简介…

面试热题(最长回文子串)

给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同&#xff0c;则该字符串称为回文字符串 输入&#xff1a;s "babad" 输出&#xff1a;"bab" 最长回文子串以前的博客已经讲过KMP算法以及比较不常见的Manacher算法…

使用数字陷波器滤除工频信号

使用数字陷波器滤除工频信号 在实际测量时经常会受到工频信号&#xff08;交流50Hz&#xff09;的干扰&#xff0c;有时干扰还很大&#xff0c;有用信号完全被淹没了。可以应用数字陷波器来消除工频信号的干扰。 数字陷波器函数如下函数&#xff1a;iirnotch功能&#xff1a;数…

【JVM】(二)深入理解Java类加载机制与双亲委派模型

文章目录 前言一、类加载过程1.1 加载&#xff08;Loading&#xff09;1.2 验证&#xff08;Verification&#xff09;1.3 准备&#xff08;Preparation&#xff09;1.4 解析&#xff08;Resolution&#xff09;1.5 初始化&#xff08;Initialization&#xff09; 二、双亲委派…

【go-zero】docker镜像直接部署API与RPC服务 如何实现注册发现?docker network 实现 go-zero 注册发现

一、场景&问题 使用docker直接部署go-zero微服务会发现API无法找到RPC服务 1、API无法发现RPC服务 用docker直接部署 我们会发现API无法注册发现RPC服务 原因是我们缺少了docker的network网桥 2、系统内查看 RPC服务运行正常API服务启动,通过docker logs 查看日志还是未…

寄存器详解(一)

目录 前言&#xff1a; 通用寄存器 示例&#xff1a; 通用寄存器的划分 汇编指令 cpu物理地址的形成 地址加法器运算示例&#xff1a; 1. 相关部件提供段地址和偏移地址 2. 段地址和偏移地址送入地址加法器 3. 段地址*16 4. 求出物理地址 5. 输出物理地址 段的概念 Deb…

在线五子棋对战

目录 数据管理模块&#xff08;数据库设计&#xff09; 前端界面模块 业务处理模块 会话管理模块网络通信模块(session,cookie) 在线管理模块 房间管理模块 用户匹配模块 项目扩展 数据管理模块&#xff08;数据库设计&#xff09; 数据库中有可能存在很多张表&#xf…

MQTT(EMQX) - SpringBoot 整合MQTT 连接池 Demo - 附源代码 + 在线客服聊天架构图

MQTT 概述 MQTT (Message Queue Telemetry Transport) 是一个轻量级传输协议&#xff0c;它被设计用于轻量级的发布/订阅式消息传输&#xff0c;MQTT协议针对低带宽网络&#xff0c;低计算能力的设备&#xff0c;做了特殊的优化。是一种简单、稳定、开放、轻量级易于实现的消息…

APP开发中的性能优化:提升用户满意度的关键

APP开发中的性能优化是需要持续进行的&#xff0c;它不仅能够让用户体验到 APP的使用感受&#xff0c;还能在一定程度上提升用户的满意度&#xff0c;从而提升 APP的粘性和转化率。不过在实际开发中&#xff0c;很多 APP开发公司会存在性能优化上的问题&#xff0c;这就需要了解…

[C++项目] Boost文档 站内搜索引擎(3): 建立文档及其关键字的正排 倒排索引、jieba库的安装与使用...

之前的两篇文章: 第一篇文章介绍了本项目的背景, 获取了Boost库文档 &#x1fae6;[C项目] Boost文档 站内搜索引擎(1): 项目背景介绍、相关技术栈、相关概念介绍…第二篇文章 分析实现了parser模块. 此模块的作用是 对所有文档html文件, 进行清理并汇总 &#x1fae6;[C项目] …