双目深度估计原理立体视觉

双目深度估计原理&立体视觉

  • 0. 写在前面
  • 1. 双目估计的大致步骤
  • 2. 理想双目系统的深度估计公式推导
  • 3. 双目标定公式推导
  • 4. 极线校正理论推导

0. 写在前面

双目深度估计是通过两个相机的对同一个点的视差来得到给该点的深度。
标准系统的双目深度估计的公式推导需要满足:1)两个相机的光轴水平; 2) 两个相机焦距分辨率一致,也即内参一致;3)两个相机的成像平面水平,两个相机坐标系之间只存在x轴方向的平移关系。

但是得到的双目系统,不一定满足上述的三个条件,两个相机的坐标系之间大概率存在某个旋转平移关系,因此在使用标准系统的双目估计原理公式之前,需要首先完双目相机之间的外参标定,得到两者的旋转平移关系。

1. 双目估计的大致步骤

  • 摄像头校准: 首先需要对双目摄像头进行校准,确保两个摄像头的成像参数(如焦距、主点位置、畸变参数等)已经准确标定。
  • 立体视觉匹配: 使用立体视觉技术对左右两个摄像头捕获的图像进行匹配。这通常涉及在两个图像中找到对应的特征点或特征区域,比如角点、边缘等。
  • 视差计算: 通过匹配得到的对应点,计算它们在左右图像之间的视差(disparity)。视差是指同一物体在两个图像中对应点的像素偏移量,视差越大表示物体距离摄像头越近。
  • 三角测距: 利用视差信息和摄像头之间的几何关系,可以使用三角测量原理计算物体的距离。这通常需要知道摄像头的基线长度(两个摄像头之间的距离)和相机的内参(如焦距、主点位置等)。
  • 深度估计: 根据视差信息和摄像头参数,可以进行深度估计,得到物体到摄像头的距离信息。这通常是通过将视差转换为实际距离的公式来实现的。

如果两个相机因为安装位置或者某些原因造成了不满足理想双目系统的萨格条件,就需要一些复杂的方法,最简单的方法就是得到两者的旋转平移矩阵,完成其中一个相机的旋转和平移,构造一个虚拟的相机(安装位置姿态与另一个相机之间满足理想双目系统)。

2. 理想双目系统的深度估计公式推导

双目深度估计是通 过两个相机的对同一个点的视差来得到给该点的深度。只要得到某个点在两个图片中的视差,就可以得出该点的深度。
在这里插入图片描述
如图所示, B B B为基线长度, f f f为相机焦距, d d d为视差, x l , x r x_l,x_r xl,xr分别表示目标点在左右相机图像中的的像素u坐标。其中 f , B f,B f,B是固定值,深度计算步骤如下:
{ f z = x l x f z = x r x − B \begin{align} \begin{cases} {f \over z} = {x_l \over x } \\ {f \over z} = {x_r \over x-B} \end{cases} \end{align} {zf=xxlzf=xBxr
得,
z = f B x l − x r = f B d \begin{align} z = {fB \over x_l - x_r} = {fB \over d} \end{align} z=xlxrfB=dfB
因此只要知道目标点在两个图片中得像素差,就能得到深度z。

3. 双目标定公式推导

因为得到得双目系统不一定为理想状态,所以需要得到两者得位姿关系。

事先声明如下定义:
p w p_w pw: 某目标点P在世界系下的笛卡尔3D坐标
p c l p_{cl} pcl:该点在左相机坐标系中的笛卡尔3D坐标
p c r p_{cr} pcr: 该点在右相机坐标系中的笛卡尔3D坐标
R c l w R_{cl}^w Rclw: 旋转关系convert a point from left camera coordinate to world
R c r w R_{cr}^w Rcrw: 旋转关系convert a point from right camera coordinate to world
t c l w t_{cl}^w tclw: 平移关系convert a point from left camera coordinate to world
t c r w t_{cr}^w tcrw: 平移关系convert a point from right camera coordinate to world
可以得到如下的关系
{ p w = R c l w ⋅ p c l + t c l w p w = R c r w ⋅ p c r + t c r w \begin{align} \begin{cases} p_w = R_{cl}^w \cdot p_{cl} + t_{cl}^w \\ p_w = R_{cr}^w \cdot p_{cr} + t_{cr}^w \end{cases} \end{align} {pw=Rclwpcl+tclwpw=Rcrwpcr+tcrw
式(3)可得
R c l w ⋅ p c l + t c l w = R c r w ⋅ p c r + t c r w \begin{align} R_{cl}^w \cdot p_{cl} + t_{cl}^w = R_{cr}^w \cdot p_{cr} + t_{cr}^w \\ \end{align} Rclwpcl+tclw=Rcrwpcr+tcrw
同乘 R c r w − 1 {R_{cr}^w}^{-1} Rcrw1 得,

R c r w − 1 ⋅ R c l w ⋅ p c l + R c r w − 1 ⋅ t c l w = R c r w − 1 ⋅ R c r w ⋅ p c r + R c r w − 1 ⋅ t c r w R c r w − 1 ⋅ R c l w ⋅ p c l + R c r w − 1 ⋅ t c l w = p c r + R c r w − 1 ⋅ t c r w p c r = R c r w − 1 ⋅ R c l w ⋅ p c l + R c r w − 1 ⋅ t c l w − R c r w − 1 ⋅ t c r w \begin{align} {R_{cr}^w}^{-1} \cdot R_{cl}^w \cdot p_{cl} + {R_{cr}^w}^{-1} \cdot t_{cl}^w &={R_{cr}^w}^{-1} \cdot R_{cr}^w \cdot p_{cr}+ {R_{cr}^w}^{-1} \cdot t_{cr}^w \\ {R_{cr}^w}^{-1} \cdot R_{cl}^w \cdot p_{cl} + {R_{cr}^w}^{-1} \cdot t_{cl}^w &= p_{cr}+ {R_{cr}^w}^{-1} \cdot t_{cr}^w \\ p_{cr} &= {R_{cr}^w}^{-1} \cdot R_{cl}^w \cdot p_{cl} + {R_{cr}^w}^{-1} \cdot t_{cl}^w - {R_{cr}^w}^{-1} \cdot t_{cr}^w \end{align} Rcrw1Rclwpcl+Rcrw1tclwRcrw1Rclwpcl+Rcrw1tclwpcr=Rcrw1Rcrwpcr+Rcrw1tcrw=pcr+Rcrw1tcrw=Rcrw1Rclwpcl+Rcrw1tclwRcrw1tcrw
最终得,
p c r = R c l c r ⋅ p c l + t c l c r \begin{align} p_{cr} &= R_{cl}^{cr} \cdot p_{cl} + t_{cl}^{cr} \\ \end{align} pcr=Rclcrpcl+tclcr
其中,
R c l c r = R c r w − 1 ⋅ R c l w t c l c r = R c r w − 1 ⋅ t c l w − R c r w − 1 ⋅ t c r w \begin{align} R_{cl}^{cr} &= {R_{cr}^w}^{-1} \cdot R_{cl}^w \\ t_{cl}^{cr} &= {R_{cr}^w}^{-1} \cdot t_{cl}^w - {R_{cr}^w}^{-1} \cdot t_{cr}^w \end{align} Rclcrtclcr=Rcrw1Rclw=Rcrw1tclwRcrw1tcrw
注意,式(9)(10)中左右相机世界系的位姿在完成左右相机各自的标定以后,就已经得到了。所以可以直接使用。一对棋盘格位姿的左右相机照片,就可以构成式(9)(10)两个。因为拍摄了多张图片,利用最小二乘法等某种非线性优化的的方式,最小化误差,即可得到我们最佳估计的 矩阵,有了这两个矩阵,就可以进一步进行两个相机的极线修正了。式(9)为右相机成像平面到左相机成像平面的旋转矩阵(convert a point from left camera coordinate to right camera).

4. 极线校正理论推导

通过3得到的两者的位姿关系,完成两个相机的极线矫正。进而通过2的步骤完成深度估计

极线较正完成的是两个相机位置姿态的调整,使得左右相机达到理想双目系统的位置关系。下面是较正前后的位置状态对比‘极线校正的基本方法是对两幅图像做投影变换,使两幅图像上的对应匹配点所在的极线共线。本质上就是将相机固有的透视矩阵经过相应的几何变换得到新的透视矩阵,使得转换后的两幅图像的极线保持水平。最常见的校正方法就是Bouguet极线校正方法。opencv中的API名称为 cvStereoRectify

  • 校正前的双目相机位姿关系
    在这里插入图片描述
  • 校正后的双目相机位姿关系
    在这里插入图片描述
    计算某个特征点的视差是在校正后的双目相机像平面中求得,需要注意的是,校正后的相机位置姿态是一个虚拟位置姿态,与原来的位置之间存在一个旋转关系(假如较正前后的光心位置一致),这个旋转关系就是单应矩阵,也是IPM算法思想的基础。

Bouguet极线校正方法:左右相机成像平面各旋转一半,使得左右图像重投影造成的误差最小,左右视图的共同面积最大。
使用 Bouguet 算法进行其极线校正的基本原理为:首先要最大限度得降低两幅双目图像中各帧的相同投影频次,其次要使每一帧的相同投射误差最小,最后尽量增加其观测的面积。设右相机成像平面到左相机成像平面的旋转矩阵为 cR ,然后把它分解为两个子旋转矩阵 1r 和 2r 。当使用这两个左右转换矩阵分别旋转左右相机时,两相机刚好能产生 1/2 角点上的旋转量,因此主光线向量的朝向能和旋转前维持一致。

后边的过程等以后需要的时候再做研究

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

https://zhuanlan.zhihu.com/p/362018123
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://engineering.purdue.edu/~byao/Thesis/%E7%A1%95%E5%A3%AB%E8%AE%BA%E6%96%87-%E9%9F%A9%E4%BF%A1_ZJU16.pdf
https://blog.csdn.net/x_r_su/article/details/52683754

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/583755.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ASR语音转录Prompt优化

ASR语音转录Prompt优化 一、前言 在ASR转录的时候,我们能很明显的感受到有时候语音识别不是很准确,这过程中常见的文本错误主要可以归纳为以下几类: 同音错误(Homophone Errors) 同音错误发生在不同词语发音相似或相…

Modelsim自动仿真平台的搭建

Modelsim自动仿真平台的搭建 如果要搭建自动仿真平台脚本那就需要更改下面3个文件。run_simulation.bat、complie.do和wave.do文件。注:前提是安装了modulsim并且配置好了环境变量,这里不过多介绍。 一、下面是run_simulation.bat文件的内容 : 注释的…

MySQL-查询数据-练习

练习 1.创建一个查询,显示收入超过 12,000 的雇员的名字和薪水。 select LAST_NAME,SALARY from employees where SALARY > 12000;2.创建一个查询,显示雇员号为 176 的雇员的名字和部门号。 select LAST_NAME,DEPARTMENT_ID from employees where …

前端vue如何生成二维码

有时候有需要链接直接生成二维码在手机上看的需求,比如下载,比如信息,比如excel 下面先引入包 import QRCode from qrcode; 然后上代码 // 将res转换成二维码const qrCodeData JSON.stringify(res); // 将res转换为字符串作为二维码数据// …

WebSocket 全面解析

🌟 引言 WebSocket,一个让实时通信变得轻而易举的神器,它打破了传统HTTP协议的限制,实现了浏览器与服务器间的全双工通信。想象一下,即时消息、在线游戏、实时股票报价…这一切都离不开WebSocket的魔力💫。…

xLua热更新解决方案

图中灰色的无法实现热更新,而Lua代码可以打包成AB包,并上传到资源服务器, 当进入游戏检测是否有资源需要更新,需要则会从资源服务器下载。 学习目标 1.导入xLua框架 2.C#调用Lua 3.Lua调用C# 4.xLua热补丁 xLua框架导入和AB…

什么是网络安全等级保护测评(等保测评)?

什么是网络安全等级保护测评(等保测评)呢?今天永恒无限就为大家介绍下网络安全等级保护测评(等保测评) 网络安全等级保护测评(等保测评)是指对信息和信息系统按照重要性等级进行的保护测评。它…

爱普生晶振在物联网LoRa通讯中的应用

LoRa 是LPWAN通信技术中的一种,是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。这一方案改变了以往关于传输距离与功耗的折衷考虑方式,为用户提供一种简单的能实现远距离、长电池寿命、大容量的系统,进而扩展传感网络…

C语言:项目实践(贪吃蛇)

前言: 相信大家都玩过贪吃蛇这款游戏吧,贪吃蛇是久负盛名的游戏,它也和俄罗斯方块,扫雷等游戏位列经典游戏的行列,那贪吃蛇到底是怎么实现的呢? 今天,我就用C语言带着大家一起来实现一下这款游戏…

Golang Colly爬取图片gorm存储数据

语言:Golang 库:Iris/Colly/gorm 运行结果 text/html; charset=utf-8 It is image 20240429222029_0_0.jpg Saved file: images\20240429222029_0_0.jpg text/html; charset=utf-8 It is image 20240429222030_1_0.jpg Saved file: images\20240429222030_1_0.jpg It is ima…

String类1⃣️

目录 预备知识 1.string成员函数 1.string() 2.string (const char* s); 3.string (size_t n, char c); 4.string (const string& str);(拷贝构造) 2.string类对象的容量操作 1.size length 2.max_size 3.resize 4.capacity 5.empty 6…

【leetcode面试经典150题】78.二叉树中的最大路径和(C++)

【leetcode面试经典150题】专栏系列将为准备暑期实习生以及秋招的同学们提高在面试时的经典面试算法题的思路和想法。本专栏将以一题多解和精简算法思路为主,题解使用C语言。(若有使用其他语言的同学也可了解题解思路,本质上语法内容一致&…

元数据管理在态势感知系统的应用

在当今信息爆炸的时代,数据量呈指数级增长,如何高效地管理和利用这些数据成为了各行各业所面临的重要问题。在网络安全领域,态势感知系统作为一种重要的安全防御工具,承担着及时发现、分析和应对安全威胁的重任。 然而&#xff0c…

网络层 --- IP协议

目录 1. 前置性认识 2. IP协议 3. IP协议头格式 3.1. 4位版本 3.2. 4位首部长度 3.3. 8位服务类型 3.4. 16位总长度 3.5. 8位生存时间 TTL 3.6. 8位协议 3.7. 16位首部检验和 3.8. 32位源IP和32位目的IP 4. 分片问题 4.1. 为什么要分片 4.2. 分片是什么 4.2.1. …

助力企业部署国产云原生数据库 XSKY星辰天合与云猿生完成产品互兼容认证

近日,北京星辰天合科技股份有限公司(简称:XSKY 星辰天合)与杭州云猿生数据有限公司(简称“云猿生”)完成了产品互兼容认证,星辰天合企业级分布式统一数据平台 XEDP 与云猿生的开源数据库管控平台…

JAVA系列 小白入门参考资料 继承

目录 1. 为什么需要继承 2. 继承的概念 3. 继承的语法 4. 父类成员访问 4.1 子类中访问父类的成员变量 1. 子类和父类不存在同名成员变量 2. 子类和父类成员变量同名 4.2 子类中访问父类的成员方法 1. 成员方法名字不同 2. 成员方法名字相同 ​5. super关键字 …

《ElementPlus 与 ElementUI 差异集合》el-dialog 显示属性有差异

ElementPlus 用属性 v-model ElementUI 用属性 visible 其实也是 Vue2/Vue3 的差异:v-model 指令在组件上的使用已经被重新设计,替换掉了 v-bind.sync

自己手写了一个大模型RAG项目-05.基于知识库的大模型问答

大家好,我是程序锅。 github上的代码封装程度高,不利于小白学习入门。 常规的大模型RAG框架有langchain等,但是langchain等框架源码理解困难,debug源码上手难度大。 因此,我写了一个人人都能看懂、人人都能修改的大…

力扣HOT100 - 79. 单词搜索

解题思路&#xff1a; 深度优先搜索&#xff08;DFS&#xff09; 剪枝。 class Solution {public boolean exist(char[][] board, String word) {char[] words word.toCharArray();for(int i 0; i < board.length; i) {for(int j 0; j < board[0].length; j) {if (df…

Springboot+MybatisPlus入门案例(postman测试)

一、项目框架 pom.xml依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apac…